Multi-Objective Multicast Routing based on Ant Colony Optimization

Diego Pinto* Benjamín Barán* and Ramón Fabregat+

* National Computing Center, National University of Asuncion - Paraguay
+ Science and Technology Department, Catholic University of Asunción - Paraguay
 {dpinto, bbaran}@cnc.una.py
+ Institut d’ Informàtica i Aplicacions - Universitat of Girona. Girona, Spain
 {ramon.fabregat}@udg.es

Abstract. This work presents a new multiobjective algorithm based on ant colonies, which is used in the construction of the multicast tree for data transmission in a computer network. The proposed algorithm simultaneously optimizes cost of the multicast tree, average delay and maximum end-to-end delay. In this way, a set of optimal solutions, know as Pareto set, is calculated in only one run of the algorithm, without a priori restrictions. The proposed algorithm was inspired in a Multi-objective Ant Colony System (MOACS). Experimental results prove the proposed algorithm outperforms a recently published Multiobjective Multicast Algorithm (MMA), specially designed for solving the multicast routing problem.

Keywords: Evolutionary Algorithms, Traffic Engineering, Multicast Routing, Multi-objective Optimization, Pareto Front and Ant Colony Optimization.

1. Introduction

Multicast consists of simultaneous data transmission from a source node to a subset of destination nodes in a computer network. Multicast routing algorithms have recently received great attention due to the increased use of new point to multipoint applications, such as radio and TV transmission, on-demand video and teleconferences. Such applications generally have some quality-of-service (QoS) parameters as maximum end-to-end delay and minimum bandwidth resources. Another important consideration in Traffic Engineering is the cost of the tree, understanding cost as other parameters to be minimized, such as: hop count, bandwidth utilization, and others. In this is way; the Multicast Traffic Engineering Problem should be treated as a Multi-Objective Problem (MOP) [13].

Ant Colony Optimization (ACO) is a meta-heuristic proposed by Dorigo et al. [4] inspired by the behavior of ant colonies. In the last few years, ACO has empirically shown its effectiveness in the resolution of several different NP-hard combinatorial optimization problems. ACO uses a colony of artificial ants, i.e. a set of simple agents that work in a cooperative way and communicate by means of artificial pheromone in the search of better
solutions. Several algorithms based on the ACO approach consider the multicast routing problem as a mono-objective problem, minimizing the cost of the tree under multiple constrains. In [8] Y. Liu and J. Wu propose the construction of a multicast tree, where only the cost of a tree is minimized. On the other hand, Gu et al. consider multiple parameters of Quality of Service as constrains while minimizing the cost of the tree [7]. These algorithms treat the Traffic Engineering Multicast problem as a mono-objective problem with several constrains. The main disadvantage of this approach is the necessity of an a priori predefined upper bound that can exclude good trees from the final solution.

This work proposes for the first time to solve the Traffic Engineering Multicast problem using the Multi-Objective Ant Colony System (MOACS), introduced in [9]. This algorithm optimizes several objectives simultaneously. Experimental results have recently demonstrated that MOACS is the best multi-objective ACO algorithm for the bi-objective Traveling Salesman Problem (TSP) [6].

Besides, to verify the results obtained with the proposed algorithm, it is compared to a Multi-objective Multicast Algorithm (MMA) [3]. MMA is based on the Strength Pareto Evolutionary Algorithm (SPEA) and it simultaneously minimizes three objectives functions for the static case in [1], while in [2] optimizes four objectives for the dynamic case. In summary, this work takes one the finest ant colony multi-objective algorithms, adapting it to the Traffic Engineering Multicast problem.

2. Problem Formulation

For this work, a network is modeled as a direct graph $G=(V, E)$, where V is the set of nodes and E is the set of links. Let:

- $(i,j) \in E$: Link from node i to node j; where $i, j \in V$.
- $c_{ij} \in \mathbb{R}^+$: Capacity of link (i, j).
- $d_{ij} \in \mathbb{R}^+$: Delay of link (i, j).
- $s \in V$: Source node of a multicast group.
- $N_r \subseteq V \setminus \{s\}$: Set of destinations of a multicast group.
- $\phi \in \mathbb{R}^+$: Traffic demand, in bps.
- $T(s,N_r)$: Multicast tree with source in s and a set of destinations N_r.
- $p_T(s,n) \subseteq T(s,N_r)$: Path connecting a source node s with a destination node $n \in N_r$.
- $d(p_T(s,n))$: Delay of path $p_T(s,n)$, given by the sum of the delays of the path, i.e.:

$$d(p_T(s,n)) = \sum_{(i,j) \in p_T(s,n)} d_{ij}$$ (1)

Using the above definitions, a multicast routing problem may be stated as a MOP [13] that tries to find the multicast tree $T(s,N)$ that simultaneously minimizes the following objectives:

\footnote{For the rest of this work $T = T(s,N_r)$ for further simplicity.}
a. Cost of the tree: \[f_1(T) = \phi \cdot \sum_{(i,j) \in T} c_{ij} \] (2)

b. Maximum end-to-end delay: \[f_2(T) = \max_{n \in N_r} \{ d(p_f(s,n)) \} \] (3)

c. Average delay: \[f_3(T) = \frac{1}{|N_r|} \sum_{n \in N_r} d(p_f(s,n)) \] (4)

Considering two solutions \(T \) and \(T' \), for the same multicast group \((s,N_r)\):
\[
\begin{align*}
 x &= \begin{bmatrix} f_1(T) & f_2(T) & f_3(T) \end{bmatrix} \\
 z &= \begin{bmatrix} f_1(T') & f_2(T') & f_3(T') \end{bmatrix}
\end{align*}
\]
only one of the following three conditions can be given:

- \(x \) dominates \(z \): \(x_i \leq z_i \land x_i \neq z_i \forall i \in \{1,2,3\} \)
- \(z \) dominates \(x \): \(z_i \leq x_i \land z_i \neq x_i \forall i \in \{1,2,3\} \)
- \(x \sim z \): \(x \) and \(z \) are non-comparable

Alternatively, for the rest of this work, \(x \sim z \) will denote that \(x \preceq z \) or \(z \preceq x \). A decision vector \(T \) is non-dominated with respect to a set \(Q \) iff: \(T \preceq T' \), \(T \in Q \).

When \(T \) is non-dominated with respect to the whole domain of feasible solutions, it is called an optimal Pareto solution; therefore, the Pareto optimal set \(X_{true} \) may be formally defined as:
\[
X_{true} = \{ T \in X_f | T \text{ is non-dominated with respect to } X_f \} \quad (6)
\]
The corresponding set of objectives \(Y_{true} = f(X_{true}) \) constitutes the Optimal Pareto Front.

3. Multi-objective Ant Colony Optimization algorithm

The Multi-objective Ant Colony Optimization algorithm (MOACS), proposed in [9], is a generalization of the Ant Colony System (ACS) [5]. This approach uses a colony of ants for the construction of \(m \) solutions \(T \) at every generation. Then, the known Pareto Front \(Y_{know} \) [13] is updated, including all non-dominate solutions. Finally, the pheromone matrix \(\tau_{ij} \) is updated. Figure 1 presents a MOACS general procedure.

Read multicast group \((s,N_r)\) and traffic demand \(\phi \)
Initialize \(\tau_{ij} \)
while stop criterion is not verified
 repeat for \(k=1 \) to \(m \)
 \(T = \) Build Tree (Algorithm 3)
 if \((T \not\in Y_{know}) \) then
 \(Y_{know} = Y_{know} \cup \{T\} \)
 end if
 end repeat
 Update of \(\tau_{ij} \)
end while

Figure 1. General Procedure of MOACS (Algorithm 1)
The update of pheromone matrix τ_{ij} depends on the state of Y_{know}. If Y_{know} was modified, then τ_{ij} is re-initialized ($\tau_{ij} = \tau_0$) to improve exploration; otherwise, a global update of τ_{ij} is made using the solutions of Y_{know} for a better exploitation, as shown in Figure 2.

repeat for every $T \in Y_{\text{know}}$
 repeat for every $(i, j) \in T$
 $\tau_{ij} = (1 - \rho) \tau_0 + \rho \Delta t$
 end repeat
end repeat

Figure 2. Global Update of τ_{ij} (Algorithm 2)

with:

\[
\Delta \tau = \frac{1}{\sum_{T \in Y_{\text{know}}} (f_1(T) + f_2(T) + f_3(T))}
\]

(7)

where:

- $f_1(T)$ Normalized cost of T, given by equation (2).
- $f_2(T)$ Normalized average delay of T, given by equation (3).
- $f_3(T)$ Normalized maximum end-to-end delay of T, given by equation (4).
- $\rho \in (0, 1]$ Trail persistence.

An ant begins the construction of a solution in the source s. A non-visited node is pseudo-randomly [9] selected at each step. This process continues until all desired destinations are reached. Consider N as the list of possible starting nodes, N_i as the list of feasible neighboring nodes to node i, D_r as the set of destinations already reached and ϕ as another trail persistence parameter. Figure 3 shows the procedure to find a solution T.

Initialize T, N and D_r
Repeat until ($N = \emptyset \lor D_r = N$)
 Select node i of N and build set N_i
 if ($N_i = \emptyset$) then
 $N = N - i$ /* erase node without feasible neighbor */
 else
 Select node j of N_i /*pseudo-random rule */
 $T = T \cup (i, j)$
 $N = N \cup j$
 if ($j \in D_r$) then
 $D_r = D_r \cup j$ /*node j is node destination*/
 end if
 end if
 $\tau_{ij} = (1 - \phi) \tau_0 + \phi \tau_0$ /*update pheromone*/
end repeat
Prune Tree T /* eliminate not used link*/

Figure 3. Procedure to Build Tree (Algorithm 3)
4. Multi-objective Multicast Algorithm

The Multi-objective Multicast Algorithm (MMA), proposed in [1], is based on the *Strength Pareto Evolutionary Algorithm (SPEA)* [12]. This algorithm maintains an evolutionary population P and an external set of Pareto solutions P_{nd}. Starting with a random population, the individuals evolve to the desired solutions, as shown in Figure 4 [1].

```
Read multicast group $(s,N_r)$ and traffic demand $\phi$
Build routing tables
Initialize $P$ and $P_{nd}$
while until stop criterion is not verified
  Discard identical individuals
  Evaluate individuals of $P$
  Update non-dominated set $P_{nd}$
  Compute fitness
  Selection
  Apply crossover and mutation
end while
```

Figure 4. General Procedure of MMA (Algorithm 4)

Build routing tables is a procedure that builds possible paths from a source s to each destination of a multicast group. It usually selects the R shortest, and R cheapest paths, where R is a parameter of the algorithm. A chromosome is represented by a string of length $|N_r|$ in which an element (gene) g_i represents a path [1], as shown in Figure 5.

```
ID  Path  0-3  0-1  0-1-2-4  0-1-3  0-1-2-4-3
1   2     0-3-2
2   3     0-1-2
3   4     0-1-3-2
```

Figure 5. Relationship among a chromosome, genes and routing tables.

Initialize P and P_{nd} generates $|P|$ chromosomes, where P is an evolutionary population. The best non-dominated solutions found so far is saved in an external set P_{nd}. Procedure *Discard identical individuals of P* replaces duplicated solutions with new randomly generated solutions, while procedure *Evaluate individuals of P* calculates the 3 objectives for each individual.

Update non-dominated set P_{nd} include in P_{nd} non-dominated solutions of P, and it erases any dominated solution of P_{nd}. Then, fitness is computed as in [12]. The selection operator is later applied over the set $P \cup P_{nd}$ to generate a new population P. Finally, *crossover and mutation* operators are applied using 2-point crossover and changing some genes in each chromosome of the new population.
5. Experimental Results

Experimental tests were carried out using the NTT network [10] consisting of 55 nodes and 144 links. Four tests were performed for the 4 groups presented in Table 1. Each test consists of 3 runs for 40, 160 and 320 seconds. Both algorithms, MOACS and MMA, have been implemented on a 350 MHz AMD-K6 computer with 128 MB of RAM. The compiler used was Borland C++ V 5.02.

Table 1. Multicast Group used for the tests

| Group | s | N_r | |N_r| |
|-------|---|-----|---|-----|
| Group 1 | (5) | {0, 1, 8, 10, 22, 32, 38, 43, 53} | 9 |
| Group 2 | (4) | {0, 1, 3, 5, 9, 10, 12, 23, 34, 37, 41, 46, 52} | 14 |
| Group 3 | (4) | {0, 1, 3, 5, 6, 9, 10, 12, 17, 22, 23, 25, 34, 37, 41, 46, 47, 52, 54} | 19 |
| Group 4 | (4) | {0, 1, 3, 5, 6, 9, 10, 11, 12, 17, 19, 21, 22, 23, 25, 33, 34, 37, 41, 44, 46, 47, 52, 54} | 24 |

5.1. Comparison Procedure

The comparison procedure used for each multicast group was the following:

a) Each algorithm was run five times to calculate an average.

b) For each algorithm, five sets of non-dominated solutions were obtained \((Y_1, Y_2..Y_5)\) and an overpopulation \(Y_T\) was calculated as the union of the five sets.

c) Dominated solutions were deleted from \(Y_T\), forming the Pareto set of each algorithm:

\[
Y_{MOACS} = \text{(Pareto Front obtained of the 5 runs using MOACS)}
\]

\[
Y_{MMA} = \text{(Pareto Front obtained of the 5 runs using MMA)}
\]

d) A set of solutions \(\hat{Y}\) was obtained as follows:

\[
\hat{Y} = Y_{MOACS} \lor Y_{MMA}
\] \hspace{1cm} (8)

e) Dominated solutions were eliminated from \(\hat{Y}\), to obtain an approximation of \(Y_{true}\), called \(Y_{apr}\). Table 2 presents the number of solutions \(T \in Y_{apr}\) found for every multicast group.

Table 2. Amount of Optimal Solutions for each Multicast Group.

| \(|Y_{apr}|\) | Group 1 | Group 2 | Group 3 | Group 4 |
|-----------|---------|---------|---------|---------|
| | 9 | 18 | 24 | 18 |

5.2. Results

The odd tables of each test present the average number of solutions of each algorithm that are in \(Y_{apr}\), denoted as \([\in Y_{apr}]\). The set of solutions that are dominated by \(Y_{apr}\) is denoted as \([Y_{apr}^d]\). The number of found solutions is \(|Y_{alg}|\) and the percentage of solutions present in \(Y_{apr}\) is \([\% (\in Y_{apr})]\). The following steps explain how to read Table 3 considering MMA.

a) Row \(Y_{MMA}\), column \([\in Y_{apr}]\) indicates that 5.8 solutions in average belongs to \(Y_{apr}\).

b) Row \(Y_{MMA}\), column \([Y_{apr}^d]\) indicates that 0 solutions are dominates by \(Y_{apr}\).

\footnote{Note that for practical issues \(Y_{apr} = Y_{true}\), i.e. \(Y_{apr}\) is an excellent approximation of \(Y_{true}\).}
c) Row Y_{MMA}, column $[|Y_{alg}|]$ indicates that in average 5.8 solutions were found by MMA.

d) Row Y_{MMA}, column $[\%(\in Y_{apr})]$ indicates that MMA finds 64% of Y_{apr} solutions.

The even tables of each experiment present the covering figure among algorithms [11]. Only results for group 1 and group 4 are presented.

Experiment 1. Results for multicast group 1 (see Table 1)

a) In Tables 3, 5 and 7 MOACS finds almost all solutions of Y_{apr}, overcoming MMA.
b) All found solutions belong to Y_{apr}; therefore, the coverings are 0 in Tables 4, 6 and 8.

c) Row Y_{MMA}, column $[|Y_{alg}|]$ indicates that in average 5.8 solutions were found by MMA.
d) Row Y_{MMA}, column $[\%(\in Y_{apr})]$ indicates that MMA finds 64% of Y_{apr} solutions.

The even tables of each experiment present the covering figure among algorithms [11]. Only results for group 1 and group 4 are presented.

Experiment 1. Results for multicast group 1 (see Table 1)

a) In Tables 3, 5 and 7 MOACS finds almost all solutions of Y_{apr}, overcoming MMA.
b) All found solutions belong to Y_{apr}; therefore, the coverings are 0 in Tables 4, 6 and 8.

c) Row Y_{MMA}, column $[|Y_{alg}|]$ indicates that in average 5.8 solutions were found by MMA.
d) Row Y_{MMA}, column $[\%(\in Y_{apr})]$ indicates that MMA finds 64% of Y_{apr} solutions.

The even tables of each experiment present the covering figure among algorithms [11]. Only results for group 1 and group 4 are presented.

Experiment 2. Results for multicast group 2 (see Table 1)

a) In this last experiment characterized for a larger number of destinations multicast group, the MOACS also demonstrated to be better than the MMA. In fact, MOACS obtained a larger number of solutions belonging to Y_{apr}, for all run times.
b) Notice that MOACS solutions dominate more solutions than the MMA on average for 160 and 320 seconds (Tables 12 and 14); although not at 40 seconds.

Experiment 2. Results for multicast group 2 (see Table 1)

a) In this last experiment characterized for a larger number of destinations multicast group, the MOACS also demonstrated to be better than the MMA. In fact, MOACS obtained a larger number of solutions belonging to Y_{apr}, for all run times.
b) Notice that MOACS solutions dominate more solutions than the MMA on average for 160 and 320 seconds (Tables 12 and 14); although not at 40 seconds.

Experiment 4. Results for multicast group 4 (see Table 1)

a) In this last experiment characterized for a larger number of destinations multicast group, the MOACS also demonstrated to be better than the MMA. In fact, MOACS obtained a larger number of solutions belonging to Y_{apr}, for all run times.
b) Notice that MOACS solutions dominate more solutions than the MMA on average for 160 and 320 seconds (Tables 12 and 14); although not at 40 seconds.

Experiment 4. Results for multicast group 4 (see Table 1)

a) In this last experiment characterized for a larger number of destinations multicast group, the MOACS also demonstrated to be better than the MMA. In fact, MOACS obtained a larger number of solutions belonging to Y_{apr}, for all run times.
b) Notice that MOACS solutions dominate more solutions than the MMA on average for 160 and 320 seconds (Tables 12 and 14); although not at 40 seconds.
6. Conclusions

Ant algorithms proved to be a promising approach to solve the multicast routing problem. Considering the presented experimental results, MOACS is able to find 69.9% of the best solutions in average, while MMA could only find 42.1%. Besides, the Y_{MOACS} has a better coverage then Y_{MMA} proving its capacity to treat this kind of problems.

As future work, we will consider other objective functions, as maximum link uses and experiments with a dynamic environment and other ACO’s versions.

References

