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ABSTRACT 
This paper presents a new traffic engineering load balancing 
taxonomy, classifying several publications and including their 
objective functions, constraints and proposed heuristics. Using 
this classification, a novel Generalized Multiobjective Multitree 
model (GMM-model) is proposed. This model considers for the 
first time multitree-multicast load balancing with splitting in a 
multiobjective context, whose mathematical solution is a whole 
Pareto optimal set that can include several results than it has been 
possible to find in the publications surveyed. To solve the GMM-
model, a multi-objective evolutionary algorithm (MOEA) inspired 
by the Strength Pareto Evolutionary Algorithm (SPEA) is 
proposed. Experimental results considering up to 11 different 
objectives are presented for the well-known NSF network, with 
two simultaneous data flows.  

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Network 
communications.  C.2.2 [Network Protocols]: Routing protocols. 
C.2.3 [Network Operations]: Network management. 

General Terms 
Management, Design. 

Keywords 
multicast, splitting, traffic engineering, load balancing, 
multiobjective. 

1. INTRODUCTION 
Traffic engineering (TE) is concerned with improving the 
performance of operational networks, usually taking into account 
QoS (Quality of Service) requirements. The main objectives are 
to reduce congestion hot spots, improve resource utilization and 
provide adequate QoS for final users. These aims can be achieved 
by setting up explicit routes through the physical network in such 
a way that the traffic distribution is balanced across several traffic 
trunks, giving the best possible service, i.e., minimum delay, 
packet losses, jitter, etc. 

When load balancing techniques are translated into a 
mathematical formulation, a heuristic or a practical 
implementation, different conflicting objectives are found and 
hence they have been considered in the literature (more details are 
presented in Table 2) as minimizing: 

• maximum or average link utilization [1-14]; 
• maximum, average and / or total hop count [1, 11-16]; 
• maximum, average and / or total delay [1, 8, 9, 11-14, 

16-28]; 
• bandwidth consumption [3, 4, 7, 11-15, 17, 19, 23-26, 28, 

29]; 
• flow assignation [4, 24]; 
• packet loss [17, 25, 26, 28]; 
• queue size [22]; 
• number of Label Switching Paths (LSPs) in a Multi-Protocol 

Label Switching (MPLS) implementation [16]; 
• jitter [17] and 
• different cost functions [8-10, 18, 27, 28, 30-34]. 
 
Clearly, when all these objectives are considered, it can be seen 
that the problem is multiobjective, as already recognized by 
several authors [8, 9, 11, 18, 24-27]. It should be noted that before 
this multiobjective context was clearly recognized, several 
authors treated some objectives as restrictions with arbitrary a 
priori constraints, typically expressed as hard upper bounds on 
objectives such as the delay, hop count or bandwidth 
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consumption, to name a few. Moreover, since single objective 
techniques such as linear programming, shortest path or genetic 
algorithms (GA) have been widely used, most influential works in 
this field (see Table 2) have studied this Multi-Objective Problem 
(MOP) as a Single-Objective Problem (SOP) with a cost function 
that combines several objectives using, as an example, a weighted 
sum  [1, 4, 7, 12-14, 17, 23, 28]. It should be emphasized that an 
optimization problem is said to be a SOP if it optimizes a unique 
cost function, even though this cost function is a (typical linear) 
combination of several different objective functions, with several 
possible restrictions. It should be noted that in a pure multi-
objective context, no objective needs to be considered as more 
important than the others, no a priori weighting of the objectives 
is needed and no a priori constraint on any objective is necessary; 
therefore, the solution of a MOP is usually a whole set of optimal 
compromised solutions, known as a Pareto set [35]. 

One interesting solution to the balancing alternative is the 
multipath approach, in which data is transmitted through different 
paths to achieve an aggregated, end-to-end bandwidth 
requirement. Several advantages of using multipath routing are 
discussed in [21]. Links do not get overused and therefore do not 
get congested, and so they have the potential to aggregate 
bandwidth, allowing a network to support a higher data transfer 
than is possible with any single path. Furthermore, some authors 
have expanded this idea by proposing to split each flow into 
multiple subflows in order to achieve better load balancing [12, 
13, 16, 36]. 

For a load balancing model to be general, unicast considerations 
are not enough and multicast should also be considered, as 
already proposed in [7-14, 17, 23-28, 30-34]. 

In all the different alternatives summarized when studying TE 
load balancing, a taxonomy is needed to clarify and better 
understand the problem; therefore, the next section proposes a TE 
load balancing taxonomy, which classifies previous publications., 
A Generalized Multiobjective Multitree model (GMM-model) 
inspired by this taxonomy is presented in section 3, 
mathematically formalizing the TE load balancing problem as a 
MOP. A Multi-Objective Evolutionary Algorithm (MOEA) which 
is able to solve the proposed GMM-model is presented in section 
IV, given its recognized ability for solving MOPs [8, 9, 35, 37]. 
Moreover, GMM-model considers a multitree-multicast load 
balancing problem with splitting in a multiobjective context, for 
the first time, using an evolutionary approach. To illustrate the 
resolution of the GMM-model using a MOEA, section 5 presents 
experimental results. Section 6 comments on the advantages of 
the GMM-model in comparison with previously published 
models. The final conclusions and future work are left for section 
7. 

2. TAXONOMY OF RELATED WORK 
To categorize the large amount of related work, we propose a 
novel taxonomy. Table 1 presents the proposed TE Load 
Balancing Taxonomy. First, it considers the flow type, classifying 
reviewed works into a traditional unicast flow type and a more 
general multicast flow type. Second, it categorizes load balancing 
techniques considering the number of paths/trees employed. For 
instance, if different flows going from a given source to the same 
set of destinationscan be delivered (or not) through different 
paths/trees, a flow could use a path/tree while another flow could 

go through a different path/tree, both leave a given source node 
and go to the same set of destinations. Moreover, load balancing 
techniques are classified considering splitting, i.e. whether a given 
flow can be split into several subflows to balance loads using 
multiple routes. Note that splitting is only considered when a 
multipath / multitree is applied. Therefore, Table 2 indicates the 
column Splitting as Not Applicable (NA) with reference to 
unipath or unitree. Finally, optimization problems are also 
classified as a SOP or MOP considering how different objectives 
are treated, i.e. if the problem is treated with a final unique cost 
function or as a set of simultaneous conflicting objective 
functions [35]. 
Even though, the taxonomy in Table 1 is very useful for 
presenting our model in the next section, it is not complete. For a 
future work we plan to consider other characteristics such as the 
existence (or not) of a reserved backup path/tree, and the ability to 
support dynamic membership changes, among others. 

 

Using the above Taxonomy, Table 2 classifies what could be 
considered as the most inspired papers for this work. Note that 
[17] is repeated because it considers unicast and multicast flows. 
The last column of Table 2 shows the methodology/heuristic 
proposed in publication. Clearly, most publications consider the 
load balancing problem as a SOP, therefore, they have mainly 
propose the use of traditional SOP heuristics such as linear 
programming, shortest path, non-linear programming and even 
evolutionary approaches such as genetic algorithms. This last 
evolutionary approach is dominant when considering MOPs, 
where all works surveyed use some kind of MOEA. 

It can be seen that initially, most papers only consider multipath 
(and not splitting) for unicast traffic in a single-objective context. 
Immediately after, multicast flow was also considered in the same 
single-objective context (still no splitting). Later, several papers 
considering splitting began to appear in the year 2000. Lately, the 
multiobjective context of the TE problem has been slowly 
recognized [24], with an increased number of publications since 

Table 1. Proposed TE Load Balancing Taxonomy 
CLASSIFICATION 

PARAMETER DESCRIPTION 

Unicast Transmission from one source to one 
destination using a path Flow 

Types 
Multicast Transmission from one source to a set 

of destinations using a tree 

Unipath (UP) 
Unitree (UT) 

All flows from a source to the same set 
of destinations travel through the same 
path / tree Number of 

flows 
Multipath (MP) 
Multitree (MT) 

Different flows from a source to the 
same set of destinations may travel 
through different paths / trees 

No A flow always travel the same path/tree 

Splitting 
Yes 

A flow may be split in several 
subflows that may be delivered through 
different paths/trees 

Single-
Objective 
Problem (SOP) 

Only one generic cost function is 
considered Objective 

Problem Multiple-
Objective 
Problem (MOP) 

Several (conflicting) objective 
functions may be simultaneously 
optimized in a multiobjective context 
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2003 (see Table 2 in bold for multiobjective publications). Now, 
we are going to speak about some related works. 

In [19] the authors consider two generic routing algorithms that 
plan multipaths consisting of possibly overlapping paths. 
Therefore, bandwidth can be reserved and guaranteed once it is 
reserved in the links. The first problem deals with transmitting a 
message of finite length from the ingress node to the egress node 
within r units of time. A polynomial-time algorithm is proposed 
and the results of a simulation are used to illustrate its 
applicability. The second problem deals with transmitting a 
sequence of some units at such a rate that the maximum time 
difference between the two units received out of order is limited. 
The authors show that this second problem is computationally 
intractable, and propose a polynomial-time approximation 
algorithm. Therefore, a Quality of Service Routing (QoSR) 
routing along multiple paths under a time constraint is proposed 
when the bandwidth can be reserved. 

In [1] the authors propose a fuzzy optimization model for routing 
in Broadband Integrated Service Digital Network (B-ISDN) 
networks. The challenge of the proposed model is to find routes 
for flows using paths that are not hideously expensive, fulfill the 
required QoS and do not penalize the other flows that already 
exist or that are expected to arrive in the network. The model is 
analyzed in terms of performance in different routing scenarios. 
The authors obtained good improvements in performance 
compared with the traditional single metric routing techniques 
(number of hops or delay based routing). This improvement was 
achieved while maintaining a sufficiently low processing 
overhead. Throughput was increased and the probability of 
congestion was decreased by balancing the load over all the 
network links. 

In [2] the authors propose optimizing the weight setting based on 
the projected demands. They show that optimizing the weight 
settings for a given set of demands is NP-hard, so they resort to a 
local search heuristic. They found weight settings that performed 
to within a few percent of the optimal general routing, where the 
flow for each demand is optimally distributed over all paths 
between the source and destination. This contrasts with the 
common belief that Open Shortest Path First (OSPF) routing leads 
to congestion and shows that for the network and demand matrix 
studied it is not possible to get substantially better load balancing 
by switching to the proposed more flexible MPLS technologies. 

In [3] the authors propose an approach that remedies two main 
difficulties in optimal routing. The first is that these protocols use 
shortest path routing with destination based forwarding. The 
second is that when the protocols generate multiple equal cost 
paths for a given destination routing prefix, the underlying 
forwarding mechanism balances the load across these paths by 
splitting traffic equally between the corresponding set of next 
hops. These added constraints make it difficult or impossible to 
achieve optimal traffic engineering link loads. It builds links by 
taking advantage of the fact that shortest paths can be used to 
achieve optimal link loads, but it is compatible with both 
destination based forwarding and even splitting of traffic over 
equal cost paths. Compatibility with destination based forwarding 
can be achieved through a very minor extension to the result 
obtained in [WAN01a], simply by taking advantage of a property 
of shortest paths and readjusting traffic splitting ratios 
accordingly. Accommodating the constraint of splitting traffic 

evenly across multiple shortest paths is a more challenging task. 
The solution we propose stems from the fact that current day 
routers have thousands of route entries (destination routing 
prefixes) in their routing table. Instead of changing the forwarding 
mechanism responsible for distributing traffic across equal cost 
paths, we plan to control the actual (sub)set of shortest paths (next 
hops) assigned to routing prefix entries in a router’s forwarding 
table(s). 

In [15] the author proposes an adaptive multipath traffic 
engineering mechanism called Load Distribution over Multipath 
(LDM). The main goal of LDM is to enhance the network 
utilization as well as the network performance by adaptively 
splitting the traffic load among multiple paths. LDM takes a pure 
dynamic approach that does not require any previous traffic load 
statistics. Routing decisions are made at the flow level and traffic 
proportioning reflects both the length and the load of a path. 
Moreover, LDM dynamically selects a few good Label Switched 
Paths (LSPs) according to the state of the entire network. 

In [20] the authors propose a traffic engineering solution that 
adapts the minimum-delay routing to the backbone networks for a 
given long-term traffic matrix. This solution is practical and is 
suitable to implement in a Differential Services framework. In 
addition, they introduce a simple scalable packet forwarding 
technique that distinguishes between datagram and traffic that 
requires in-order delivery and forwards them accordingly and 
efficiently. 

In [21] the authors propose an algorithm to carry out the unicast 
transmission of applications requiring minimum bandwidth 
through multiple routes. The algorithm consists of five steps: a) 
the multipath P set is initialized as empty, b) the maximum flow 
graph is obtained, c) the shortest route from the ingress node to 
the egress node is obtained, d) the bandwidth consumption 
obtained in the maximum flow of step b is decreased, and e) step 
(d) is repeated until the required bandwidth for transmission is 
reached. The results presented show very similar end-to-end delay 
values to those obtained independently whether the load 
balancing is applied or not. However, link utilization is improved 
when load balancing is applied. 

In [4] the authors present a multi-objective optimization scheme 
to transport unicast flows. In this scheme they consider the MLU 
(α) and the selection of best routes based on the flow assigned to 
each link. In this paper the authors consider a new approach that 
accomplishes traffic engineering objectives without full mesh 
overlaying. Instead of overlaying IP routing over the logical 
virtual network traffic engineering objectives such as balancing 
traffic distribution are achieved by manipulating link metrics for 
IP routing protocols such as OSPF. In this paper, they present a 
formal analysis of the integrated approach, and propose a 
systematic method for deriving the link metrics that convert a set 
of optimal routes for traffic demands into the shortest path with 
respect to the link weights that pass through them. The link 
weights can be calculated by solving the dual of a linear 
programming formulation. 

In [5] the authors propose a method for transporting unicast flows. 
The constraint of a maximum number of hops is added to the 
minimization of the MLU (α). Moreover, the traffic is divided 
between multiple routes in a discrete way. This division simplifies 
implementing the solution. The behavior of five approaches are 
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analyzed: Shortest path based on non-bifurcation, Equal Cost 
Multiple Paths (ECMP), Traffic bifurcation, H Hop-constrained 
traffic bifurcation and H Hop-constrained traffic bifurcation with 
node affinity. Through the approaches of Hop-constrained traffic 
bifurcation, a minimum value of the MLU (α) is obtained. 

In [6] the authors propose an intra-domain routing algorithm 
based on multi-commodity flow optimization which allows load 
sensitive forwarding over multiple paths. It is not constrained by 
weight-tuning of the legacy routing protocols, such as OSPF, and 
it does not require a totally new forwarding mechanism, such as 
MPLS. These characteristics are accomplished by aggregating the 
traffic flows destined for the same egress into one commodity in 
the optimization and using a hash based forwarding mechanism. 
The aggregation also reduces computational complexity, which 
makes the algorithm feasible for on-line load balancing. Another 
contribution is the optimization objective function, which allows 
precise tuning of the tradeoff between load balancing and total 
network efficiency. 

In [29] the authors propose two multi-path constraint based 
routing algorithms for Internet traffic engineering using MPLS. In 
a normal Constraint-based Shortest Path First (CSPF) routing 
algorithm, there is a high probability that it cannot find a feasible 
path through networks for a large bandwidth constraint. This is 
one of the most significant constraints of traffic engineering. The 
proposed algorithms can divide the bandwidth constraint into two 
or more sub constraints and find a constrained path for each sub 
constraint, providing there is no single path satisfying the whole 
constraint. Extensive simulations show that they enhance the 
success probability of path setup and the utilization of network 
resources. 

In [22] the authors introduce Opportunistic Multipath Scheduling 
(OMS), a technique for exploiting short term variations in path 
quality to minimize delay, while simultaneously ensuring that the 
splitting rules dictated by the routing protocol are fulfilled. In 
particular, OMS uses measured path conditions in time scales of 
up to several seconds to opportunistically favor low-latency high-
throughput paths. However, a naive policy that always selects the 
highest quality path would violate the routing protocol’s path 
weights and potentially lead to oscillation. Consequently, OMS 
ensures that over longer time scales relevant for traffic 
management policies, traffic is split according to the ratios 
determined by the routing protocol. A model of OMS is 
developed and an asymptotic lower bound on the performance of 
OMS as a function of path conditions (mean, variance, and Hurst 
parameter) for self-similar traffic is derived. 

In [16] the author suggests a method to improve network 
performance by appropriately distributing traffic in accordance 
with the state of the paths in a dynamic traffic pattern occurring in 
a short time in a multipath environment. TE using an Adaptive 
Multipath-forwarding (TEAM) is a traffic engineering (TE) 
algorithm that aims to improve network performance by properly 
distributing traffic in dynamic traffic patterns occurring in a short 
time scale. This method monitors the state of the paths by using a 
probe packet in the ingress node of the network, and computes the 
cost of the paths with monitored values. Path cost consists of 
weights given in the paths, such as packet delay and loss rate, the 
number of hops and the number of LSPs. This enables it to adapt 
to the state of the network without a sudden change by tracing 
neighboring solutions from an existing solution. Therefore, it can 

be seen that network performance is improved when the total cost 
of paths of the whole network are minimized. In addition, by 
distributing traffic into each interface using a table-based hashing 
method, the problem of ordering packets is solved. 

In [7] the authors propose non-bifurcation and bifurcation 
methods to transport multicast flows with hop-count constraints. 
When analyzing results and simulations, they only consider the 
non-bifurcation methods. The constraint of consumption 
bandwidth is added to the constraints considered in [RAO98]. In 
[LEE02] a heuristic is proposed. The proposed algorithm consists 
of two parts: 1) modifying the original graph to the hop-count 
constrained version, 2) finding a multicast tree to minimize the 
MLU (α). 

In [24] the authors propose a new multicast tree selection 
algorithm based on a non-dominated sorting technique of a 
genetic algorithm to simultaneously optimize multiple QoS 
parameters. Simulation results demonstrate that the proposed 
algorithm is capable of obtaining a set of QoS-based near optimal, 
non-dominated multicast routes within a few iterations. In this 
paper, the authors use a Non-dominated Sorting based Genetic 
Algorithm (NSGA) technique to develop an efficient algorithm 
which determines multicast routes on-demand by simultaneously 
optimizing end-to-end delay guarantee, bandwidth requirements 
and bandwidth utilization without combining them into a single 
scalar objective function. 

In [25] the authors propose algorithm MEFPA (Multi-constrained 
Energy Function based Precomputation Algorithm) for a multi-
constrained QoSR problem based on analyzing linear energy 
functions (LEF). They assume that each node s in the network 
maintains a consistent copy of the global network state 
information. This algorithm fulfills each QoS metric to b degrees. 

It then computes B 
( )1

2
−

−+= k
kbCB

 coefficient vectors that are 
uniformly distributed in the k-dimensional QoS metric space, and 
constructs one LEF for each coefficient vector. Then based on 
each LEF, node s uses Dijkstra's algorithm to calculate a least 
energy tree rooted by s and a part of the QoS routing table. 
Finally, s combines the B parts of the routing table to form the 
complete QoS routing table it maintains. For distributed routing, 
for a path from s to t, in addition to the destination t and k 
weights, the QoS routing table only needs to save the next hop of 
each path. For source routing, the end-to-end path from s to t 
along the least energy tree should be saved in the routing table. 
Therefore, when a QoS connection request arrives, it can be 
routed by looking up a feasible path satisfying the QoS 
constraints in the routing table. 
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3. GENERALIZED MULTIOBJECTIVE 
MULTITREE MODEL: MATHEMATICAL 
FRAMEWORK 
Inspired by the above taxonomy, the present work proposes a 
Generalized Multiobjective Multitree model (GMM-model) in a 
pure multiobjective context that considers simultaneously for the  

 

first time, multicast flow, multitree, and splitting, as shown in the 
last row of Table 2. 

In the studied multiobjective context, a MOP considers a set of n 
decision variables, q objective functions and m restrictions that 
can be expressed as [35]: 
 

Optimize    y = φ(x) = [φ1(x), …, φq(x)]   (1) 

Table 2. Proposed Taxonomy applied to reviewed papers including objective functions, constraints and heuristics 
Objective functions (OF) Constraint (C) Taxonomy 
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Heuristic 

[17]* 1999   X X  X   X    X X SOP Genetic algorithms, Weighted Sum 
[18] 2004   X       X     

UP NA 
MOP MOEA 

[19] 1998   X X           Ford-Fulkason method 
[1] 1998 X X X          X  Fuzzy logic, Weighted Sum 
[2] 2002 X            X  Lineal programming and shortest path 
[3] 2003 X   X         X  Lineal programming and shortest path 

[15] 2003  X  X       X    

No SOP 

(Lineal) multi-commodity network flow 
problem 

[20] 2000   X          X  Non Lineal programming  
[21] 2001   X          X  Max-flow and shortest path 
[4] 2001 X   X X        X  Lineal programming, Weighted Sum  
[5] 2002 X          X  X  Mixed-integer programming 

[6] 2002 X              (Lineal) multi-commodity network flow 
problem 

[29] 2003    X         X X Max-flow and Shortest Path 
[22] 2004   X    X      X  Scheduling algorithm 
[36] 
[16] 

2002 
2004 

 X X  X   X       

Unicast 
MP 

Yes SOP 

Shortest Path  

[17]* 1999   X X  X   X    X X Genetic algorithms, Weighted Sum 
[30] 
[31] 
[32] 

1998  
1999  
1999 

         X     Genetic algorithms 

[33] 1999          X  X   Genetic algorithms 
[23] 2001   X X           Genetic algorithms, Weighted Sum 

[7] 2002 X   X       X  X X 

SOP 

Mixed-integer programming, Weighted 
Sum 

[24] 2002   X X X          MOEA based on NSGA 
[25] 2003   X X  X      X   MOEA 
[26] 2004   X X  X         MOEA based on NPGA 
[27] 2004   X       X     MOEA based on SPEA 
[8] 
[9] 

2004 X  X       X     

UT NA 

MOP 

MOEA based on SPEA 

[34] 2003          X     Shortest Path Tree 
[28] 2004   X X  X   X X     Genetic algorithms, Weighted Sum 
[10] 2004          X     

SOP 
DIMRO Heuristic  

[11] 2004 X X X X           

No 

MOP MOEA based on NSGA 
[12] 
[13] 
[14] 

2004 
2003 
2004 

X X X X         X X SOP Non lineal programming, max-flow and 
shortest path tree, Weighted Sum 

Present work X X X X X  X X X    X X 

Multicast 

MT 

Yes 

MOP MOEA based on SPEA 

 
UP: Unipath  
MP: Multipath  

UT: Unitree 
MT: Multitree NA: Not Applicable SOP:   Single-Objective Problem 

MOP: Multiple-Objective Problem 
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subject to   e(x) = [e1(x), …, em(x)] ≥ 0 
 

where x = [x1, …, xn] ∈ X is the decision vector and y = [y1, …, 
yq] ∈ Y the objective vector. X denotes the decision space while 
Y = φ(X) the corresponding objective space. The set of 
restrictions e(x) ≥ 0 determines the set of feasible solutions Xf ⊆ 
X and its corresponding set of objective vectors Yf ⊆ Y. In 
general, there is no single “best” solution but a set of optimal 
solutions; therefore, a different optimality concept of should be 
established. 

In this multiobjective context, a solution u ∈ X is better than 
another v ∈ X if and only if u is as good as v in every objective 
and strictly better in at least one objective. In this case, u 
dominates v, which is denoted as u f v. On the other hand, u ~ v 
indicates that u and v are indifferent, i.e. neither u dominates v, 
nor v dominates u; therefore, it is not possible to decide which one 
is better when all q objectives are considered at the same time. 

A decision vector x* ∈ Xf is Pareto optimal if it is not dominated 
by any other decision vector of Xf. The set of all Pareto optimal 
solutions is known as a Pareto set (denoted as X*) and its 
corresponding set of objective vectors is known as a Pareto 
Front, denoted as Y*. 

The proposed GMM-model considers a network represented as a 
graph G(N, E), with N denoting the set of nodes and E the set of 
links. The cardinality of a set is denoted as |.|, thus |N| represents 
the cardinality of N. 

The set of flows is denoted as F. Each flow f∈F can be split into 
Kf subflows that after normalization can be denoted as 
fk; k = 1, … |Kf|. In this case, fk indicates the fraction of f∈F it 
transports, i.e. 

1
1

=∑
=

fK

k
kf      (2) 

For each flow f∈F we have a source sf ∈N and a set of destination 
or egress nodes Tf ⊂ N. Let t be an egress node, i.e. t ∈Tf. 

Let tf
ij

kX  denote the fraction of subflow fk to egress node t 

assigned to link (i,j) ∈ E, i.e. 0≤
tf

ij
kX ≤1. In this way, the n 

components of decision vector x are given by all tf
ij

kX . Note that 
tf

ij
kX uses five indexes: i, j, f, k and t for the first time, unlike 

previous publications that only used a smaller subset of indexes 
because they did not deal with the same general problem [7, 13]. 
In particular, the novel introduction of a subflow-index k gives an 
easy way to identify subflows and define LSPs in a MPLS 
implementation. 

To fully define most objective functions referenced in Table 2, we 
also need to include the following notation. Let cij be the capacity 
(in bps) of each link (i,j) ∈ E. Let bf be the traffic request 
(measured in bps) of flow f ∈ F, traveling from source sf to Tf. 
Let dij be the delay (in ms) of each link (i,j) ∈ E. The binary 

variables tf
ij

kY  represent whether a link (i,j) is used (value 1) or 

not (value 0) for transporting subflow fk to destination node t, i.e. 
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where ⎡ ⎤.  denotes the ceiling function and consequently, ⎣ ⎦.  
denotes the floor function. Finally, let connectionij be an indicator 
of whether there is a link between nodes i and j. 

Given the above notation and the multiobjective context already 
presented by equation (1), the proposed GMM-model considers 
the following objective functions can be considered (see Table 2 
for a summary of objective functions (OF) already used in the 
literature): 
 

Maximal link utilization 
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Hop count, in several different flavors such as: 
 

Total hop count 
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Maximal hop count, which is useful for QoS assurance 
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Maximal hop count variation for a flow, which is useful for jitter 
and queue size calculations 
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where 
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Delay 
 

Total delay 
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Average delay 
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Maximal delay, which is useful for QoS assurance 
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Maximal delay variation for a flow, which is useful for jitter and 
queue size calculations  
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Total bandwidth consumption 
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Number of subflows, that can give an idea of the maximum 
number of LSPs for a MPLS implementation 

φ11 = ∑
=

F

f
fK
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As stated in equation (1), a MOP formulation usually considers m 
constraints (C), such as the ones that follow. 
 

Flow conservation constraints [12, 13]: 
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A subflow uniformity constraint, to ensure that a subflow fk 
always transports the same information: 
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without this restriction, 

tf
ij

kX >0 may differ from '
''
tf

ji
kX >0 and therefore, the same 

subflow fk may not transport the same data to different 
destinations t and t’. As a consequence of this new introduced 
constraint, mapping of subflows to LSPs is easy. 
 

Link capacity constraint [8, 9, 12, 13], ,, NjNi ∈∀∈∀ : 
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Constraint on the maximum number of subflows, inspired by [38]: 

,,, NiTtFf f ∈∀∈∀∈∀  
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b. or alternatively, depending on required bandwidth bf  
[12]: 
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In summary, the proposed GMM-model follows the general 
mathematical framework of any MOP, given by equation (1). In 
this context, inspired by the review in Table 2, this paper 
considers 11 objective functions given by equations (4) to (14), 
and 7 constraints given by (15) to (21). Clearly, it is not difficult 
to increment the number of objectives or constraints of the 
proposed model if new ones appear in the literature or they are 
useful for a given situation. In fact, Packet Loss has not been 
considered in this first proposal (see Table 2), but to include 
would be very easy. 

At this point, it is important to point out that the mathematical 
solution of the proposed GMM-model is a complete set X* of 
Pareto optimal solutions x*∈X*, i.e. any solution x’ outside the 
Pareto set (x’∉X*) is outperformed by at least one solution x* of 
the Pareto set (∃x* f x’); therefore, x’ can not outperform x* even 
if not all the objective functions are considered. Consequently, 
under the same set of constraints, any previous model or 
algorithm (summarized in Table 2), that only considers a subset of 
the proposed objective functions, either as a SOP or MOP, can 
find one or more solutions calculated with the GMM-model or 
dominated by solutions x*∈X* of this model. 

In conclusion, by using the GMM-model it is possible to calculate 
the whole set of optimal Pareto solutions. This includes any 
solution that has been previously found using most of the already 
published alternatives that consider any subset of the proposed 
objective functions. Now it may be clear why we call this model 
generalized. 

4. GMM RESOLUTION USING A 
MULTIOBJECTIVE EVOLUTIONARY 
ALGORITHM   
To solve the GMM-model, a Multiobjective Evolutionary 
Algorithm (MOEA) approach has been selected because of its 
well-recognized advantages when solving MOPs in general and 
TE load balancing in particular [8, 9, 11, 18, 24-27]. A MOEA, as 
a genetic algorithm, is inspired by the mechanics of natural 
evolution (based on the survival of the fittest species) [35]. 
At the beginning, an initial population of Pmax feasible solutions 
(known as individuals) is created as a starting point for the search. 
In the next stages (or generations), a performance metric, known 
as fitness, is calculated for each individual. In general, a modern 
MOEA calculates fitness considering the dominance properties of 
a solution with respect to a population. Based on this fitness, a 
selection mechanism chooses good solutions (known as parents) 
for generating a new population of candidate solutions, using 

genetic operators like crossover and mutation [39]. The process 
continues iteratively, replacing old populations with new ones, 
typically saving the best found solutions (which is known as 
elitism), until a stop condition is reached. 
In this paper, an algorithm based on the Strength Pareto 
Evolutionary Algorithm (SPEA) [37] is proposed. It holds an 
evolutionary population P and an external set Pnd with the best 
Pareto solutions found. Starting with a random population P, the 
individuals of P evolve to optimal solutions that are included in 
Pnd. Old dominated solutions of Pnd are pruned each time a new 
solution from P enters Pnd and dominates old ones. 

4.1 Encondig 
Encoding is the process of mapping a decision variable x into a 
chromosome (the computational representation of a candidate 
solution). This is one of the most important steps towards solving 
a TE load balancing problem using evolutionary algorithms. 
Fortunately, it has been sufficiently studied in current literature 
(see Table 2). However, it should be mentioned that to our best 
knowledge, this paper is the first one that proposes an encoding 
process, as shown in Fig. 1, that allows the representation of 
several flows (unicast and / or multicast) with as many splitting 
subflows as needed to optimize a given set of objective functions. 
In this proposal, each chromosome consists of |F| flows. Each 
flow f, denoted as (Flow f), contains |Kf| subflows that have 
resulted from splitting and which flow in several subflows 
(multitree, for load balancing). Inside a flow f, every subflow 
(f,k), denoted as (Subflow f,k), uses two fields. The first one 
represents a tree (Tree f,k) used to send information about flow f 
to the set of destinations Tf, while the second field represents the 
fraction fk of the total information of flow f being transmitted. 
Clearly, equation (2) should be satisfied to assure that all 
information of flow f arrives to destinations Tf. 
Moreover, every tree (Tree f,k) consists of |Tf| different paths 
(Path f,k,t), one for each destination t∈Tf. Finally, each path 
(Path f,k,t) consists of a set of nodes Nl between the source node sf 
and destination t∈ Tf (including sf and t). For optimality reasons, 
it is possible to define (Path f,k,t) as not valid if it repeats any of 
the nodes, because in this case it contains a loop that may be 
easily removed from the given path to make it feasible. Moreover, 
in the above representation, a node may receive the same 
(redundant) information by different paths of the same subflow; 
therefore, a correction algorithm was implemented to choose only 
one of these redundant path segments, making sure that any 
subflow satisfies the optimality criteria. 

(Subflow f,k) (Tree f,k) fk

(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Tree f,k)

Nsf NtNn ......(Path f,k,t)

CHROMOSOME (Flow |F|)(Flow 1) (Flow f)... ...

(Flow f) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1)

(Subflow f,k) (Tree f,k) fk(Tree f,k) fk

(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Tree f,k)

Nsf NtNn ......Nsf NtNn ......(Path f,k,t)

CHROMOSOME (Flow |F|)(Flow 1) (Flow f)... ... (Flow |F|)(Flow 1) (Flow f)... ...

(Flow f) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1)

 
Figure 1. Chromosome representation. 
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One interesting advantage of the proposed encoding is that a valid 
chromosome completely satisfies restrictions (15) to (18), making 
verifying them unnecessary. 

An example of the proposed encoding process is presented in Fig. 
2 which shows a chromosome representation for a very simple 
network topology of six nodes (|N|=6) with a flow f between a 
source node sf ={N1} and two destination nodes: Tf ={N5, N6}. 

In this example, flow f is split into three subflows: 

a first subflow (k=1) transmits 40% of the total flow information 
through (Tree f,1) which consist of two different paths (Path 
f,1,5)={N1, N2, N5} and (Path f,1,6)={N1, N2, N6}. 

a second subflow (k=2) transmits 20% of the total flow through 
(Tree f,2) using two different paths (Path f,2,5)={N1, N2, N5} and 
(Path f,2,6)={N1, N4, N6}. 

Finally, a third subflow (k=3) transmits the final 40% of the total 
flow through (Tree f,3), which consist of two different paths (Path 
f,3,5)={N1, N3, N5} and (Path f,3,6)={N1, N4, N6}. 

 

sf={N1} Tf ={N5 , N6}

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

(Subflow f,1) (Subflow f,2) (Subflow f,2)

ff1
=0.4 ff2

=0.2 ff3
=0.4

sf={N1} Tf ={N5 , N6}sf={N1} Tf ={N5 , N6}

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N1

N3

N2

N4

(Subflow f,1) (Subflow f,2) (Subflow f,2)

ff1
=0.4 ff2

=0.2 ff3
=0.4

 
[ 
  (Flow f =                     /* Generic flow f split into 3 subflows 
   (Subflow f,1 = (                                              /* first subflow 
      Tree f,1=( 
        Path f,1,5 = (N1,N2,N5),              /* path to destination N5 
        Path f,1,6 = (N1,N2,N6) ) ),         /* path to destination N6 
      fraction f1 = 0.4 )        /* subflow 1 transmits 40% of flow 
   (Subflow f,2 = (                                         /* second subflow 
      Tree f,2=( 
        Path f,2,5 = (N1,N2,N5),              /* path to destination N5 
        Path f,2,6 = (N1,N4,N6) ) ),         /* path to destination N6 
      fraction f2 = 0.2 )         /* subflow 2 transmits 20% of flow 
   (Subflow f,3 = (                                             /* third subflow 
      Tree f,3)=( 
        Path f,3,5 = (N1,N3,N5),              /* path to destination N5 
        Path f,3,6 = (N1,N4,N6) ) ),         /* path to destination N6 
      fraction f3 = 0.4 )         /* subflow 3 transmits 40% of flow 
  ) 
] 
 
Figure 2. Network topology and chromosome representation 
for a flow f with three subflows. 
 

 

4.2 Initial Population 
To generate an initial population P of valid chromosomes we 
have considered each chromosome at a time, building each (Flow 
f) of that chromosome at a time. For each (Flow f) we first 
generate a large enough set of different valid paths from source sf 
to each destination t∈ Tf (see line 1 of Fig. 7). Then, an initial |Kf| 
is chosen as a reasonable random number that satisfies constraints 
on the maximum number of subflows given by equations (20) and 
(21). To build each of the |Kf| subflows, we randomly generate a 
tree with its root in sf and leaves in Tf by randomly selecting a 
path at a time for each destination, from the previously generated 
set of paths. 

Trees are conformed by a path-set, which can contain redundant 
segments; i.e. two paths belonging to a tree with different 
destinations can meet themselves in more than one node causing 
redundant subflow information transmission between those pair of 
nodes. To correct this anomaly, a repair redundant segments 
process is defined: the shortest path of this tree should be taken as 
a pattern and then for each of the remaining paths in the tree, find 
its shortest segment starting at the latest node (branching node) in 
the pattern. The resulting segment will be a pattern segment 
starting at its source to the branching node joint with the old 
segment starting at branching node to the destination. Later, an 
information fraction of fk=1/|Kf| is initially set. 

In this initialization procedure (see lines 2-3 of Fig. 7), 
chromosomes are randomly generated one at a time. A built 
chromosome is valid (and accepted as part of the initial 
population) if it also satisfies link capacity constraint (19); 
otherwise, it is rejected and another chromosome is generated 
until the initial population P has the desired size Pmax. 

4.3 Selection 
Good chromosomes of an evolutionary population are selected for 
reproduction with probabilities that are proportional to their 
fitness. Therefore, a fitness function describes the “quality” of a 
solution (or individual). An individual with good performance 
(like the ones in Pnd) has a high fitness level while an individual 
with bad performance has a low fitness. In this proposal, fitness is 
computed for each individual, using the well-known SPEA 
procedure [37]. In this case, the fitness for every member of Pnd is 
a function of the number of chromosomes it dominates inside the 
evolutionary set P, while a lower fitness for every member of P is 
calculated according to the chromosomes in Pnd that dominate the 
individual considered. A roulette selection operator [39] is 
applied to the union set of Pnd and P each time a chromosome 
needs to be selected. 

4.4 Crossover 
We propose two different crossover operators: flow crossover and 
tree crossover. With flow crossover operator (line 10.a in Fig. 7), 
|F| different chromosomes are randomly selected to generate one 
offspring chromosome that is built using one different flow from 
each father chromosome, as shown in Fig. 3. A father may be 
chosen more than once, contributing with several flows to an 
offspring chromosome. 
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OFFSPRING (Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

CHROMOSOMES

(Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

...

|F|

1

2

OFFSPRING (Flow 1) (Flow 2) (Flow |F|)...(Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

CHROMOSOMES

(Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

...

|F|

1

2

 
Figure 3. Flow crossover operator. 
 

The tree crossover operator is based on a two-point crossover 
operator, which is applied to each selected pair of parent 
chromosomes (line 10.b in Fig. 7). In this case, the crossover is 
applied by doing tree exchanges between two equivalent flows of 
a pair of randomly selected parent-chromosomes, as shown in Fig. 
4. 

 

CHROMOSOMES Two-point crossover

OFFSPRING

(Tree f,1) f 1* ... (Tree f,k) f k* ... (Tree f,|Kf|) f |Kf|
*

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

Normalization process

1 – (flow f)

2 – (flow f)

1

2

CHROMOSOMES Two-point crossover

OFFSPRING

(Tree f,1) f 1* ... (Tree f,k) f k* ... (Tree f,|Kf|) f |Kf|
*(Tree f,1) f 1*(Tree f,1) f 1* ... (Tree f,k) f k*(Tree f,k) f k* ... (Tree f,|Kf|) f |Kf|
*(Tree f,|Kf|) f |Kf|
*

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

Normalization process

1 – (flow f)

2 – (flow f)

1

2

 
Figure 4. Tree crossover operator. 

 

Tree crossover without normalization of the information fraction 
fk usually generates infeasible chromosomes because equation (2) 
is not satisfied. Therefore, a normalization process: 

∑
=

=
fK

k
kkk fff

1

* , (22) 

is used as a last step of a tree crossover operator. 

4.5 Mutation 
A mutation operator is usually used to ensure that an optimal 
solution can be found with a probability greater than zero. This 
operator could improve the performance of an evolutionary 
algorithm, given its ability to continue the search of global 
optimal (or near optimal) solutions even after local optimal 
solutions have been found, not allowing the algorithm to be easily 

trapped in local sub-optimal solutions. Each time that an offspring 
chromosome is generated, a (generally low) mutation probability 
pm is used to decide if the mutation operator should be applied to 
this chromosome (line 11 in Fig. 7). 

To apply a mutation operator, we first randomly choose a (Flow f) 
of the new offspring, in order to later select (also randomly) a 
(Subflow f,k) on which the mutation will actually apply; therefore, 
what we implement is a subflow mutation operator. For this work, 
we propose a subflow mutation operator with two phases: 
segment mutation and subflow fraction mutation.  

For segment mutation phase, a (Path f,k,t) of (Tree f,k) is 
randomly chosen. At this point, a node Nj of (Path f,k,t) is 
selected as a Mutation Point. The segment mutation phase 
consists in finding a new segment to connect the selected 
Mutation Point to destination t (see Fig. 5), followed by the 
already explained (see B - Initial Population) repair redundant 
segment process, to achieve better chromosome quality. 

 

Path f,k,t Mutation Point

Nsf NtNj oldest segment...

Nsf new segmentNj... Nt

Path f,k,t Mutation Point

Nsf NtNj oldest segment...

Nsf new segmentNj... Nt

 
Figure 5. Segment mutation. 
 

Finally, the subflow fraction mutation phase is applied to 
(Subflow f,k) by incrementing (or decrementing) flow fraction fk 
in δ (see Fig. 6), followed by the normalization process that has 
already been explained, to assure that equation (2) is satisfied. 

 

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|
(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

 
Figure 6. Subflow fraction mutation following by 
normalization process. 
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This MOEA is summarized in Fig. 7. 

1 Obtain initial set of valid paths 

2 Generate the initial population P of size Pmax 

3 Normalize fractions and remove redundant 
segments for every chromosome in P 

4 Initialize set Pnd as empty 

5 DO WHILE A FINISHING CRITERIOM IS NOT SATISFIED 
{ 

6  Add non-dominated solutions of P into Pnd 

7  Remove dominated solutions in Pnd 

8  Calculate fitness of individuals in P and Pnd 

9  REPEAT Pmax times { 

  Generate new chromosomes-set C using 

  
a 

Tree crossover with Selection (in 
P ∪ Pnd) and normalization process 10 

  
b 

Flow crossover with Selection (in 
P ∪ Pnd) 

11 
  With probability pm mutate set C and 

normalization process and remove redundant 
segments 

12 
  Add to P valid chromosomes in C not yet 

included in P 

13  END REPEAT 

14 END WHILE 

Figure 7. Proposed Algorithm. 

5. EXPERIMENTAL RESULTS 
Although the aim of this work is to present a general model and 
not to discuss the best way to solve it, this section presents a 
simple problem and the corresponding experimental results using 
the proposed MOEA, as an illustration of what has been 
previously stated. 

5.1 Network Topology 
The chosen topology is the well-known 14-node NSF (National 
Science Foundation) network shown in Fig. 8 (|N|=14) [8, 9, 
12-14, 27]. The costs on the links represent the delays (dij) and all 
links are assumed to have 1.5 Mbps of bandwidth capacity 
(cij = 1.5 Mbps ∀(i,j)∈E). 
Two flows with the same source, sf=N0, are considered. The 
egress subsets are T1={N5, N9} and T2={N4, N9, N12}. The 
transmission rates are b1=256 Kbps for the first flow and b2=512 
Kbps for the second flow. 
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Figure 8. NSF network. 

 

5.2 Resolution of the Test Problem 
A complete set of found non-dominated solutions (best calculated 
approximation to the optimal Pareto set X* in a run) had 748 
chromosomes. This large number is due to the large number of 
objective functions and the fact that the same set of subtrees with 
different fractions fk of the flows are considered as different 
solutions because each one represents another compromise 
between conflicting objective functions. When needed, a 
clustering technique, that is included in the implemented SPEA, 
may be used to reduce the number of calculated non-dominated 
solutions to a maximum desired number [37]. Since there is no 
space to present all 748 non-dominated solutions, Table 3 shows 
some of the best calculated solutions considering one objective 
function at a time. Each row (identified by an ID given in the first 
column) represents a non-dominated solution whose chromosome 
is omitted to save space. The following 11 columns represent the 
different objective functions defined in equations (4) to (14). The 
cells in bold emphasize an optimal objective value. To better 
exemplify a solution, certain chromosomes were omitted from 
Table 3. 
 

Table 3. Some calculated Pareto Front solutions 

ID φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11

1 16,7% 26 3,3 4 1 288 22,5 47 17 4096 3 

2 33,3% 16 3,2 4 0 180 36,0 39 0 4096 2 

3 25,0% 26 3,3 4 1 275 20,9 47 17 4608 3 

4 33,3% 25 3,1 4 1 277 21,8 45 17 4608 3 

5 33,3% 26 3,3 4 1 282 22,1 45 17 4352 3 

6 33,3% 25 3,1 4 1 277 21,5 45 17 4864 3 

7 33,3% 27 3,4 4 1 305 22,8 47 11 4224 3 

8 33,3% 26 3,3 4 1 282 21,9 45 17 4480 3 

9 25,0% 25 3,1 4 1 279 22,2 47 17 4352 3 

10 33,3% 15 3,0 4 0 163 32,6 39 0 4608 2 

11 33,3% 26 3,3 4 1 282 21,8 45 17 4544 3 

12 33,3% 26 3,3 4 1 282 22,0 45 17 4416 3 

13 25,0% 28 3,5 4 1 315 23,3 47 11 4480 3 

14 33,3% 25 3,1 4 1 271 21,4 47 11 4352 3 

15 33,3% 26 3,3 4 1 282 22,2 45 17 4288 3 

16 50,0% 25 3,6 5 0 245 25,2 47 2 5792 3 

17 50,0% 28 4,0 7 0 254 26,5 56 2 5312 3 

18 50,0% 19 3,8 5 0 154 30,8 41 0 4864 2 

19 33,3% 153 4,8 10 7 1545 7,1 104 77 6176 13

 

Some solutions presented in Table 3 are clearly non-dominated 
because they are the best ones in at least one objective, like the 
ones with ID=1 with the minimum value of φ1 or ID=10 with the 
minimum value of φ2 and φ3 to just name a few. However, most 
solutions are non-dominated because they are different 
compromise solutions. As an example, solutions from ID=1 to 
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ID=15 are all optimal considering φ4, but each one represents a 
different compromise between conflicting objective functions. 

In this example when a flow is not split into subflows, we 
potentially need the least amount of LSPs (φ11=2) and there is no 
hop count or delay variations between subflows (φ5=0, φ9=0), as 
shown in solutions with ID=2, 10, 18 and 20. However, it is 
possible to have a delay variation (φ9>0) even when there is no 
hop count variation (φ5=0) if at least one flow is split (φ11>2), like 
the non-dominated solutions with ID=16 and 17. 

Fig. 9 presents the chromosome solution of ID=1 in Table 3 
showing that flow 1 of b1=256 Kbps from source s1 ={N0} to 
T1={N5, N9} is transmitted without splitting (fraction 11 = 1.0) 
while flow 2 of b2=512 Kbps from source s2 ={N0} to T2={N4, 
N9, N12} is split into two subflows transmitting 256 Kbps per 
subflow (fraction 21 = fraction 22 = 0.5). 
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subflow 2,2 (256Kbps)subflow 2,2 (256Kbps)
T2 ={N5  , N9  , N12 }   b2=512Kbpss2={N0}

T1 ={N4 , N9}             b1=256Kbps

f21
=0.5

f22
=0.5

f11
=1

[ 
  (Flow 1 = 
    (Subflow 1,1 = (  
       Tree 1,1=( 
           Path 1,1,5 = (N0,N1,N6,N5),  
           Path 1,1,9 = (N0,N1,N6,N9) ) ),  
      fraction 11 = 1.0 ) 
  ) 
  (Flow 2 = 
    (Subflow 2,1 = (  
       Tree 2,1=( 
           Path 2,1,4 = (N0,N2,N4),  
           Path 2,1,9 = (N0,N2,N7,N8,N9),  
           Path 2,1,12 = (N0,N2,N7,N8,N12) ) ), 
       fraction 21 = 0.5 )  
    (Subflow 2,2 = (  
        Tree 2,2=( 
           Path 2,2,4 = (N0,N3,N10,N4),  
           Path 2,2,9 = (N0,N3,N10,N11,N9),  
           Path 2,2,12 = (N0,N3,N10,N12) ) ), 
      fraction 22 = 0.5 ) 
  )  
] 
Figure 9. Chromosome and subflow representation of non-
dominated solution (ID=1 in Table 3). 

 

5.3 Correlation Analysis 
A correlation analysis between each pair of objective functions 
was also performed to get an idea of the real necessity of using (or 
not) that large a number of objective functions. A very large 
correlation clearly means that if one objective function is 
optimized another one with a high correlation is also indirectly 
optimized.  

Table 4 presents these correlation values between the 11 objective 
functions given by equation (4) to (14), considering the whole 
experimental set of 748 non-dominated solutions. 
 

Table 4. Correlations between objective functions 
 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 

φ1 
-

0,22 
-

0,16 
-

0,24 
-

0,26 
-

0,25 0,19 -
0,28 

-
0,19 0,09 -

0,20 

φ2  0,69 0,77 0,80 1,00 -
0,80 0,78 0,78 0,56 0,98 

φ3   0,78 0,48 0,66 -
0,35 0,62 0,41 0,52 0,59 

φ4    0,82 0,76 -
0,61 0,90 0,73 0,47 0,72 

φ5     0,81 -
0,81 0,85 0,93 0,34 0,80 

φ6      -
0,81 0,79 0,78 0,53 0,98 

φ7       -
0,69 

-
0,78 

-
0,36 

-
0,85 

φ8        0,83 0,40 0,75 

φ9         0,33 0,77 

φ10          0,53 
 

 

As shown in Table 4 there are very large correlations between 
some objectives, such as: 

• the total hop count (φ2) and total delay (φ6), with a 
correlation of almost 1, this is easy to understand given that a 
longer path usually implies more delay; 

• the total hop count (φ2) and number of subflows (φ11), with a 
value of 0.98, given that the use of splitting implies the use 
of multiple-routes and therefore, more links; 

• the maximal hop count (φ4) and maximal delay (φ8), with a 
correlation of 0,90, because the longest path in the hop count 
normally has the longest delay. In fact, equation (7) and (11) 
are very similar. Since the same reasoning applies for the 
minimal path, it is also easy to understand the high 
correlation of 0,93 for 

• the hop count variation (φ5) and delay variation (φ9). Finally, 
• the total delay (φ6) and the number of subflows (φ11) with 

0.98, as a logical consequence of the high correlation of both 
objective functions with the total hop count (φ2). 

 

More experimental results are needed to make a final conclusion, 
but it is clear that all objective functions are not really needed at 
the same time. We have considered them for sake of 
completeness, just to make sure that an optimal solution from a 
previous work that consider a given objective will also be a 
solution of the GMM-model. 
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6. MODELS COMPARISON 
Given that one of the main contributions of this work is the 
formalization of the GMM-model as a general model, it is 
interesting to compare it to another recently published model, like 
the MHDB-model [12-14]. In comparing them, we can mention 
the following advantages of the GMM-model over the previous 
MHDB-model: 

• The MHDB-model recognizes the multiobjective nature of 
the load balancing problem considering four objective 
functions (φ1, φ2, φ6, φ10), but it only solves a SOP using a 
weighted sum cost function, only finding one solution for the 
whole Pareto set. 

• The MHDB-model simultaneously considers a weighted sum 
of objectives that are highly correlated, like φ2 and φ6, which 
seems inefficient in a SOP context. On the other hand, the 
GMM-model can also consider correlated objective 
functions, but only to discriminate similar solutions in a 
multi-objective context. 

• The weighted sum method, proposed in the MHDB-model, 
and several other papers (see Table 2) are not good enough 
for finding all the solutions of a Pareto set in multiobjective 
non-convex problems, as stated in [35]. 

• The GMM-model finds better solutions (considering more 
objective functions) or at least, ones that are just as good. 

• Correlations between the considered objective functions 
prove that they are not all needed in practical cases, but 
using them insures that solutions are all Pareto optimal 
considering any desired subset of objective functions. 

• Given that the GMM-model clearly identifies each subflow 
(and even each subpath), it is very easy mapping subflows 
to LSPs for MPLS implementations. However, this mapping 
is difficult using the MHDB-model because there is no 
index for identifying subflows [40]. 

• Given that each subflow is identified clearly, it is easier and 
more efficient to extend this generalized model to the 
dynamical case given that a node that wants to be included 
in a flow only needs to find the “closer” nodes from which 
subflows can be obtained. 

 
Finally, considering the example in section V and its experimental 
results, it can be emphasized that by using the MHDB-model it 
would only be possible to find one solution (as the one of Fig. 9) 
but not a whole Pareto set as the one with 748 solutions found by 
the GMM-model. 

7. CONCLUSIONS 
This paper has presented a novel taxonomy of traffic engineering 
load balancing, classifying 35 publications including their 
objective functions, constraints and proposed heuristic. Using this 
classification (given in Table 2), it is clear that no previous work 
has studied TE load balancing considering multicast flow, 
multitree and splitting simultaneously in a multiobjective context. 

As a consequence, in this work we have proposed a Generalized 
Multiobjective Multitree model (GMM-model) that is able to 
consider any type of flow (unicast and multicast traffic), any 
number of flows (unipath / multipath - unitree / multitree), 
considering (or not) splitting (or subflows) in a more general 
multiobjective context. 

If eventually, a single-objective context is preferred, techniques 
like weighted sum may be used to easily combine objective 
functions in a unique cost function that can be combined with 
restrictions on some objectives, as an upper bound on the delay, 
hop count, etc. However, any optimal single objective solution, 
like the ones proposed in several previous papers, would be a 
solution of the GMM-model or dominated by a Pareto solution of 
it when all analyzed objective functions are simultaneously 
considered. 

To solve the proposed model, a Multi-Objective Evolutionary 
Algorithm (MOEA) inspired by the Strength Pareto Evolutionary 
Algorithm (SPEA) has been implemented, proposing new 
encoding process to represent multitree-multicast solutions using 
splitting. This MOEA found a set of 748 non-dominated solutions 
for a very simple multicast test problem based on the well-known 
NSF network. A correlation analysis of this set of non-dominated 
solutions was also included, emphasizing that several objective 
functions are highly correlated and therefore, not really needed 
for some practical applications. 

The GMM-model was compared to a previous MHDB-model, 
proving to have several advantages such as: a whole Pareto set of 
solutions that are better when all objective functions are 
considered, and a clear identification of subflows that makes 
mapping LSPs for a MPLS implementation easy. 

For future work, we plan to improve MOEA solving more 
complex problems, considering different topologies and including 
some objective functions that still haven’t been considered, such 
as Packet Loss. We also plan to formulate an extended model that 
includes backup paths and dynamic multicast group 
considerations with an efficient algorithm that can solve the 
dynamical inclusion of new destinations or leave of existing 
nodes, in a given multicast tree; and therefore, the taxonomy 
presented will be extended to include these characteristics. 
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