
Pump Scheduling Optimization Using Asynchronous Parallel

Evolutionary Algorithms

Christian von Lücken Benjamı́n Barán Aldo Sotelo

National Computing Center
National University of Asunción

San Lorenzo, Paraguay

Abstract

Optimizing the pump-scheduling is an interesting proposal to achieve cost reductions in water
distribution pumping stations. As systems grow, pump-scheduling becomes a very difficult task.
In order to attack harder pump-scheduling problems, this work proposes the use of parallel
asynchronous evolutionary algorithms as a tool to aid in solving an optimal pump-scheduling
problem. In particular, this work considers a pump-scheduling problem having four objectives to
be minimized: electric energy cost, maintenance cost, maximum power peak, and level variation
in a reservoir. Parallel and sequential versions of different evolutionary algorithms for multi-
objective optimization were implemented and their results compared using a set of experimental
metrics. Analysis of metric results shows that our parallel asynchronous implementation of
evolutionary algorithms is effective in searching for solutions among a wide range of alternative
optimal pump schedules to choose from.

Keywords: Evolutionary Computation, Parallel Evolutionary Algorithms, Multiobjective Opti-
mization, Scheduling.

1 Introduction

In conventional water supply systems, pumping of treated water represents a major expenditure in
the total energy budget [1, 2]. Because so much energy is required for pumping, a saving of one
or two percent can add up to several thousand dollars over the course of a year. In many pump
stations an investment in a few small pump modifications or operational changes may result in
significant savings [2]. In the general case, because of economical reasons, it is very difficult to
achieve reductions by means of modifications in the current facilities of pump stations. Therefore,
pump-scheduling optimization has proven to be a practical and highly effective method to reduce
pumping costs without making changes to the actual infrastructure of the whole system.

Typically, a pumping station consists of a set of pumps having different capacities. These pumps
are used in combination to drive water to one or more reservoirs. While doing this, hydraulic and
technical constraints must be fulfilled. Thus, at a particular point in time, some pumps would be
working but others would not. In this context, scheduling the pump’s operation means choosing
the right combination of pumps that will be working at each time interval of a scheduling period.

1

Then, a pump schedule is the set of all pump combinations chosen for every time interval of the
scheduling horizon. An optimal pump schedule can be defined as a pump schedule that optimizes
particular objectives, while fulfilling system constraints. Depending on the number of variables and
objectives considered, optimizing a pump-scheduling problem may be very difficult, especially for
large systems. Being a practical and challenging problem, it is no surprise that several authors
have been studying it introducing different approaches [1–9].

Ormsbee et al. [3] present a detailed review of linear, non-linear, integer, dynamic, mixed, and
other kinds of programming used to optimize a single objective: the electric energy cost. Lansey
et al. [4] introduce the number of pump switches as an alternate way to evaluate the pumps’
maintenance cost, which became the second objective considered until that date. In order to
minimize the operating costs associated with water supply pumping systems several researchers
have developed optimal control formulations. Mays [1] lists and classifies various algorithms that
have been developed to solve the associated control problem. In the past few years, Evolutionary
Computation techniques were introduced in the study of the optimal pump-scheduling problem. In
fact, Mackle et al. [5] present a single objective optimization (electric energy cost) using Genetic
Algorithms (GAs). Also, Savic et al. [6] propose a hybridization of a GA with a local search
method, to optimize two objectives: electric energy cost and pump maintenance cost. In addition,
Schaetzen [7] presents a single objective optimization using GAs considering system constraints by
establishing penalties.

Evolutionary algorithms have proven to be useful tools helping decision makers (DM) to solve a
multi-objective pump scheduling problem [8]. Since there is always a need for improvement, in [10],
the use of a parallel model for Multiobjective Evolutionary Algorithms (MOEA) is proposed to
provide DM with better solutions. Given that parallel implementations in [10] use a centralized
migration topology, there is a bottleneck when the number of processes scales up. Our work extends
the comparison of parallel models for MOEAs using a different parallel asynchronous approach than
the one presented in [10].

This paper has been organized as follows: Section 2 presents a description of the optimal pump-
scheduling problem considered. Section 3 presents motivations to choose the MOEA approach and
to use parallel concepts to improve the efficiency attained by sequential implementations for the
considered problem. Also, in this section the parallel implementation model is presented. Section
4 presents empirical comparisons of six different algorithms. Finally, conclusions of this work are
presented.

2 Multi-objective Optimal Pump Scheduling Problem

In modeling pump operation, a simple framework can be used because only the large mains between
the pump station and tanks are important in calculations [2]. Therefore, this work considers a
simplified hydraulic model based on a real pumping station in Paraguay similar to the one presented
in [7]. This model is composed of:

• an inexhaustible water source: the potable water reservoir;

• an elevated reservoir, which supplies water on demand to a community;

2

Figure 1: Model using five pumps.

• a potable water pumping station with np pumps used to pump water from a water source to
the elevated reservoir; and

• a main pipeline used to drive water from a pumping station to an elevated reservoir.

The proposed model, using five pumps, is drawn in Figure 1. The pumping station is comprised
of a set of n different constant velocity centrifugal pumps working in parallel association [2]. Pump-
ing capacities are assumed constant during every time interval. Therefore, for a time interval of
one hour, each pump combination has an assigned fixed discharge, electric energy consumption and
power. The discharge rate of a pump combination may not be a linear combination of the pumping
capacities of the individual pumps. Therefore, non-linearities in the combination of pumps are
handled through a table of pump combination characteristics as presented in Table 1. The only
data considered outside the model are the community’s water demand.

The elevated reservoir stores water coming from the pumping station, it satisfies the commu-
nity’s water demand by gravity. An important aspect is the initial level, which has to be recovered
by the end of the optimization period because:

• a final level above the initial one means extra water in the reservoir, and there is no need to
store extra water in the reservoir if it is not going to be consumed by the community. This
also implies a useless extra cost;

• a final level below the initial one means lack of water for the next day. This lack of water
has to be recovered the next day, affecting its schedule through a variation of the initial
parameters and an extra cost; and

3

Pump Code Discharge Power Pump Code Discharge Power
Combination [m3/h] [kW] Combination [m3/h] [kW]

0 00000 0 0 16 10000 1800 595
1 00001 1800 595 17 10001 3600 1190
2 00010 828 260 18 10010 2620 855
3 00011 2600 855 19 10011 4420 1450
4 00100 828 260 20 10100 2620 855
5 00101 2600 855 21 10101 4420 1450
6 00110 1650 520 22 10110 3450 1115
7 00111 3450 1115 23 10111 5250 1710
8 01000 1440 445 24 11000 3235 1040
9 01001 3235 1040 25 11001 5035 1635
10 01010 2260 705 26 11010 4060 1300
11 01011 4060 1300 27 11011 5860 1895
12 01100 2260 705 28 11100 4060 1300
13 01101 4060 1300 29 11101 5860 1895
14 01110 3090 965 30 11110 4890 1560
15 01111 4890 1560 31 11111 6690 2155

Table 1: Technical characteristics of pump combinations.

• the goal is to keep a periodical schedule if conditions in consecutive days do not change
substantially.

Therefore, a mass balance mathematical model was chosen. According to this, the amount of
water that goes into the reservoir must be equal to the amount of water that comes out of it [2].
As an additional advantage, this model allows the same schedule to be used several times if water
demand does not change substantially.

As water demand is an input data in this problem, it has to be obtained from reliable sources.
The quality and applicability of an algorithm’s solution depend on how good the predictions of the
water demand are. Data are obtained through a statistical study of the community demand during
many years. Through these studies, an estimated water demand can be established, according to
certain parameters. Several models to predict this demand are presented in [2, 11].

In order to code the pumping schedule, a binary alphabet is used. At every time interval, a bit
represents each pump. A 0 represents a pump that is not working, while a 1 represents a pump
that is working. An optimization period of one day divided into twenty-four intervals of one hour
each is considered. Thus, pumps can be turned on or off only at the beginning of each time interval
in this model.

2.1 Mathematical definition of the problem: Objectives

In order to define the multi-objective optimal pump-scheduling problem to be solved in this work,
the next subsections introduce the four different objectives considered in the optimization.

2.1.1 Electric energy cost (f1)

Electric energy cost is the cost of all electric energy consumed by all pumps of the pumping station
during the optimization period. An important issue to be considered when analyzing electric energy

4

cost is the charge structure used by the electric company. In most electricity supply systems, electric
energy cost is not the same throughout the whole day. This work considers the following charge
structure:

• Low cost (Cl): from 0:00 to 17:00 hours and from 22:00 to 24:00 hours.

• High cost (Ch): from 17:00 to 22:00 hours.

The influence of this variable in the pump scheduling is remarkable. Electric energy costs can
be substantially reduced if the optimal pump schedule uses the smallest possible number of pumps
working during the high cost period [5,6]. Water already stored in the reservoir can be used during
this period in order to satisfy the community’s water demand. A different charge structure can
also be considered if needed. The mathematical expression to calculate the electric energy cost Ec

is given by Equation (1) [5]:

Ec = Cl

17∑
i=1

c(pi) + Ch

22∑
i=18

c(pi) + Cl

24∑
i=23

c(pi) (1)

where

i : time interval index
pi : pump combination at interval i using np to denote the number of pumps in the station, pi

can be coded by a binary string in {0, 1}np , see code in Table 1 for np = 5
c(pi) : electric energy consumed by pump combination pi at time interval i, see power in Table 1.

2.1.2 Pump maintenance cost (f2)

Pump maintenance cost can be as important as electric energy cost or even more relevant. In
Lansey et al. [4], the concept of the number of pump switches is introduced as an option to measure
maintenance cost, i.e. a pump’s wear can be measured indirectly through the number of times it
has been switched on.

A pump switch is considered only if the pump was not working in the preceding time interval
and it has been turned on. A pump that was already working in the preceding time interval and
continues to be in the same state or is switched off, does not count as a pump switch for the present
work. This way, pump maintenance cost can be reduced indirectly by reducing the number of pump
switches.

The total number of pump switches Ns is simply calculated by adding the number of pump
switches at every time interval. The number of pump switches between the last time interval of
the preceding optimization period (day before) and the first time interval of the day being ana-
lyzed, is also computed. However, just half of that quantity is added to the total number of pump
switches, in order to consider possible switches between two consecutive optimization periods, sup-
posing there is a certain periodicity between consecutive pump schedules, as shown in Equation (2):

5

Ns =
24∑
i=1

|max{0; (pi − pi−1)}| + |max{0; p1 − p24}|
2

(2)

where | · | represents the 1-norm of a vector.

2.1.3 Reservoir level variation (f3)

There are three levels to be considered in the reservoir:

• a minimum level that guarantees enough pressure in the pipeline. This level must also be
maintained for security reasons, since unexpected events, as a fire, may demand a large
amount of water in a short time;

• a maximum level, compatible with the reservoir’s capacity; and

• an initial level that has to be attained by the end of the optimization period.

Maximum and minimum levels are considered as constraints. Hence, at the end of each time inter-
val, water level must end up in some position between the maximum level (hmax) and the minimum
level (hmin). However, level variation between the beginning and the end of the optimization period
(∆h), is stated as another objective to be minimized, since small variations do not necessarily make
a solution not unacceptable, as shown in Equation (3):

∆h =
∑24

i=1[D(pi) − di]
S

(3)

hi =
hi−1 + [D(pi) − di]

S
(4)

subject to
hi ≤ hmax

hi ≥ hmin

where
S : reservoir’s surface, assumed constant

D(pi) : discharge pumped at time interval i using pump combination pi

di : water demand at time interval i.

Other constraints are considered as follows:

• The water source is supposed to supply enough water at any time and without additional
costs.

• Maximum and minimum pressure constraints in the pipeline are always fulfilled, no matter
at what level the reservoir is kept.

• Valves in the system are not considered.

6

2.1.4 Maximum power peak (f4)

Some electricity companies charge their big clients according to a reserved power peak. This reserved
power has a fixed charge, but an expensive additional charge, or penalty, is added when this reserved
power is exceeded. The penalty is computed using the maximum peak power reached during the
time considered for billing purpose. Therefore, reducing such penalties becomes very important.
This work approaches this issue proposing the daily power peak Pmax as another objective to be
minimized. This is easily computed using Equation (5):

Pmax = max[P (pi)] (5)

where:
P (pi) : power at interval i using pump combination pi, see Table 1.

2.2 Multi-objective pump scheduling problem

With each of the four objectives defined, the multi-objective pump scheduling problem can be
stated as follows:

Minimize y = F(x) = (f1(x), f2(x), f3(x), f4(x)) (6)

subject to
h(xi) ≤ hmax

h(xi) ≥ hmin , for each time interval i

h(xi): reservoir level by the end of time interval i; see Equation (4)
where:

f1 : electric energy cost; see Equation (1)
f2 : number of pump switches; see Equation (2)
f3 : reservoir level variation; see Equation (3)
f4 : maximum peak power; see Equation (5)

x ∈ X ⊆ B24·np is the decision vector, B = {0, 1}
y = (y1, y2, y3, y4) ∈ Y ⊂ R

4 is the objective vector

In summary, the defined multi-objective pump scheduling problem considers the pumps’ charac-
teristics (pumping capacities) in order to satisfy water demand, while fulfilling other constraints
such as the maximum and minimum levels in the reservoir. At the same time, electric energy cost,
pump maintenance cost, maximum power peak, and level variation in the reservoir between the
beginning and the end of the optimization period, are minimized. Clearly, in a 24 hour period,
these objectives may be conflictive, e.g., for minimizing power peak a good schedule uses a small
amount of energy during the whole day, while for minimizing cost it is better to consume energy
while the cost is lower, trying to turn off the pumps during the high cost period.

7

3 Pump-Scheduling Optimization Using Parallel MOEAs

3.1 Discussion

In multi-objective optimization problems with several conflicting objectives there is no single opti-
mal solution optimizing all objectives simultaneously, but rather a set of alternative solutions rep-
resenting optimal trade-off between the various objectives. These solutions are known as Pareto-
optimal or non-dominated solutions. A solution is said to be Pareto-optimal regarding a given
subset of solutions if no other solution in the subset can be considered as better when all objec-
tives are taking in account and no other preference information is provided. A solution is called
as a true Pareto-optimal solution if it is non-dominated with respect to the whole search space.
Pareto-optimal solutions form the so-called Pareto-optimal set and its image in the objective space
is known as the Pareto-optimal front. A true Pareto-optimal set is composed of all the true Pareto-
optimal solutions of the considered problem. The true Pareto-optimal set and its corresponding
true Pareto-optimal front are denoted as Ptrue and PFtrue respectively.

In many multi-objective optimization problems, knowledge about the true Pareto-optimal front
helps the decision maker to choose the best compromise solution according to her preferences.
Classical search methods handle multi-objective problems by means of scalarization techniques.
Therefore, they really work with only one objective, formed by a composition of the other objectives.
In this way, these methods aren’t able to deal adequately with the simultaneous optimization of
various conflicting objectives. Since traditional methods were developed with one objective in mind,
they are not well suited to obtaining multiple solutions for a multi-objective problem in a single
run.

In addition, exact methods are not adequate for searching solutions in huge search spaces because
of the impossibility to explore the entire domain. For example, having a pump station comprised
of five pumps and an optimization scope of 24 one-hour intervals, there are 2120 > 1036 solutions to
explore for this optimal pump-scheduling problem. Problem constrains reduce the search space to
a subset of feasible solutions, but the cardinality of such subset is still too large to be exhaustively
analyzed by classical methods.

When computing the true Pareto-optimal front is computationally expensive or infeasible and
exacts methods can’t be applied, a good approximation to the real Pareto set is desirable. MOEAs
do not guarantee identification of the true Pareto-optimal front, but they have demonstrated their
ability to explore effectively and efficiently huge and complex search spaces, finding good approxi-
mations of the entire true Pareto-optimal set for many difficult multi-objective problems in a single
run. Therefore, MOEAs become a promising alternative to solving the pump scheduling problem.

At each generation of a MOEA’s execution, a certain set of trade-off solutions is identified. These
solutions can be considered as Pareto-optimal regarding the current genetic population. This set is
represented by Pcurrent(t), where t stands for the generation number. The Pareto front associated
with Pcurrent(t) is denoted as PFcurrent(t). It is expected that, while evolutionary process goes on,
Pcurrent(t) approximates to Ptrue. Then, when a stop criterion is reached, the final solution set
obtained by a MOEA has the potential to be a good enough approximation for Ptrue. This final
solution set is represented by Pknown, while PFknown denotes its associated Pareto front.

MOEAs are stochastic search algorithms. Hence, they don’t guarantee to find the global opti-
mum in a given execution. Therefore, to obtain a set of good solutions it is usual to perform various

8

executions of a given MOEA and combine their reported results. Since multi-objective functions
may be computationally expensive, the size of a MOEA population and the number of generations
have to be limited in order to obtain solutions in a reasonable time.

Both population size and number of generations affect the quality of final solutions. Hence,
it is desirable to provide a method that can explore a huge search space and/or carry out more
generations in a given wall-clock time period, improving the quality of obtained solutions.

Parallelization of MOEAs appears to be a very good option to expand the search space an
algorithm can examine [10]. Also, by interchanging individuals between several populations, it is
possible to speed up the convergence of these algorithms to the true Pareto-optimal front.

To demonstrate these two statements for the pump scheduling problem, this work proposes
a parallel asynchronous model for MOEAs. Using this model, parallel implementations of various
outstanding MOEAs are tested. Then, results obtained by sequential and parallel MOEA executions
were compared using a set of metrics. Thus, this work extends the comparison of the parallel
MOEA implementation presented in [10] by using a new parallel model as well as a slightly different
comparison method.

3.2 Parallel Asynchronous MOEAs

The parallel model for MOEA presented in this work is based on a multi-deme or island genetic
algorithms approach [12, 13]. In multi-deme genetic algorithm, one population is divided into
subpopulations called islands, regions or demes. Each subpopulation runs a separate genetic algo-
rithm. The fitness value of an individual is calculated only relative to other individuals from the
same region. Additionally to the basic operators of a genetic algorithm, a migration operator is
introduced. This operator controls the exchange of individuals between islands. By dividing the
population into regions and by specifying a migration policy, the multi-deme model can be adapted
to various parallel architectures, especially for MIMD machines [12].

The proposed parallel framework consists of two kinds of processes, a collector and several
pMOEAs (parallel Multi-objective Evolutionary Algorithms). The collector structure is presented
in Algorithm 1. This procedure spawns all pMOEA processes and receives calculated solutions from
them. In addition, the collector maintains an archive of the non-dominated solutions interchanged
between demes and provides the final approximation set. This process does not utilize any evolu-
tionary operator and does not interfere with the evolutionary process that is done by each pMOEA
process. If the number of solutions in the collector process exceeds a desired number, an SPEA
clustering procedure [14] is used to prune the set of solutions.

Meanwhile, pMOEAs are responsible for performing the real computational work. These
pMOEAs basically differ from their sequential counterparts as follows:

1. pMOEAs use parameters received from the collector;

2. pMOEAs select individuals to migrate and send them to the other pMOEAs;

3. pMOEAs receive individuals from other islands and replace local solutions by received ones;
and finally

4. pMOEAs send their final solution set to the collector responsible for the user interface work.

9

Algorithm 1 General structure of the collector procedure
Algorithm Collector ()
Initialize parameters
Spawn H pMOEAs with their corresponding parameters
while H > 0 do

Wait for pMOEAs solutions
Collect received solutions in collector population P
Eliminate covered solutions in P
if the number of solutions in P exceeds a given number then

Prune S applying the SPEA clustering procedure
end if
if results are marked as finals then

H = H − 1
end if

end while
Write final result out

Algorithm 2 presents the general framework for pMOEA processes. In each island, parameters
are received from the collector and an initial population is generated. Then, as long as a stop
criterion is not reached, the evolutionary process proceeds. At each generation, the migration
condition is tested. In this work, the migration condition is based on a probability test. If the
migration condition is true, migrants are selected.

Since there is no unique best solution to migrate, some criterion must be applied. In this work,
elements to migrate are considered only among non-dominated solutions in the current generation.
In some cases, the number of non-dominated solutions in a population may be very large. Hence,
a parameter controlling the maximum number of migrants is provided. Therefore, migration of
individuals is controlled by two parameters, one for the frequency of communications, and another
for the number of migrants. In this case, migrating elements may represent a fraction of the
non-dominated set of individuals that currently are in a MOEA’s population. Thus, a number
of individuals are randomly selected from the set of non-dominated solutions. In this way, all
non-dominated solutions are treated equal and no other consideration is needed. After choosing
individuals to migrate, these are broadcasted to all other processes.

Once the migration condition is tested and the corresponding procedure has been executed, it
is checked if there are received solutions. If they are not, the procedure just goes on. Otherwise,
replacement actions are taken. There are many alternatives to receive and replace individuals,
among them:

1. apply selection to the union set of received migrants and current population;

2. randomly, replace elements in the genetic population;

3. randomly, replace elements dominated by the received ones.

From the above alternatives, the first requires major modifications of the original algorithm. The
other approaches store received solutions in an auxiliary buffer and copy solutions to the genetic
population if a condition is satisfied. The second approach permits the loss of good quality solutions

10

Algorithm 2 General structure of pMOEA procedures
Algorithm pMOEA()
Receive parameters of the MOEA execution plus the migration probability pmig and the maximum number
of non-dominated solution to migrate nmig

Generates an initial population P (0) at random, and set t = 0
while the stop criterion is not reached do

t = t + 1
Generates a new population P (t) using a given MOEA procedure
if condition to migrate is reached then

Select migrants from P (t) according to a specified policy
Send migrants to all other processes

end if
if there are received solutions from other demes then

Replace individuals in P (t) by received ones according to an specified policy
end if

end while
Send Pknown to collector with termination signal

when they are replaced by bad migrants. On the other hand, the third option ensures that non-
dominated solutions will not be replaced at random. At the same time, this last method has
a non-zero probability of not losing the worst solution, preserving genetic information of several
fronts, while guaranteeing the maintenance of good solutions. When a pMOEA reaches its stop
criterion, final non-dominated solutions are sent to the collector before finishing.

4 Experimental Parameters and Results

4.1 Parameters

In order to test the performance of pMOEA implementations in solving the multi-objective pump-
scheduling problem, a test problem was chosen. The results of different executions of these imple-
mentations were compared under a set of selected metrics [15]. The multi-objective pump schedul-
ing test problem parameters used in this work are based on technical characteristics of the main
pumping station of a water supply system in Asuncion, Paraguay’s capital, as described below:

• A set of np = 5 pumps is used.

• An elevated reservoir with the following dimensions is considered:

– area = 2, 600m2,

– hmax = 7m,

– hmin = 1m,

– hinitial = 3m,

– usable volume = 15, 600m3.

• A demand curve based on statistical data of water consumption in a typical day, as presented
in Figure 2.

11

Figure 2: Water demand curve.

• An electricity cost structure with Ch = 2Cl.

With these specific values, sequential and parallel implementations of six algorithms were
developed. Algorithms used in this work are: Multiple Objective Genetic Algorithm (MOGA)
[16], Niched Pareto Genetic Algorithm (NPGA) [17], Non Dominated Sorting Genetic Algorithm
(NSGA) [18], Strength Pareto Evolutionary Algorithm (SPEA) [14], NSGA-II [19] and Controlled
Elitist NSGA-II (CNSGA-II) [20]. These algorithms were selected for consistency with previous
authors’ works [8, 10]. Also, these algorithms are good representative examples of different ages in
MOEA research [21–23]. Detailed information on each implemented MOEA can be found in the
referenced papers. A general background on various implementations of evolutionary algorithms
is provided in [24]. It is expected that many possible solutions obtained by the algorithms do not
fulfill hydraulic and technical constrains. Therefore, a heuristic method was combined with each
implemented MOEA in order to transform a general solution into a feasible one [8].

For each considered MOEA, 10 different executions were carried out in their sequential and
parallel versions using 1, 2, 4, 8 and 16 processes placed on different machines. Each execution
used a different random seed. In parallel runs, a migration probability (pmig) of 0.5 was used
i.e., good solutions are transmitted to other processors in around half of the generations. In these
executions, the maximum number of non-dominated solutions interchanged (nmig) was 10% of
the genetic population’s size. Considering the parallel platform used, these values represent a
good experimental trade-off between the frequency of interchanges and the number of interchanged

Parameter
Algorithm pm pc N N ′ σshare tdom tred

CNSGA-II 0.01 0.8 100 - - - 0.7
NSGA-II 0.01 0.8 100 - - - -

SPEA 0.01 0.8 100 100 - - -
NSGA 0.01 0.8 100 - 0.41 - -
NPGA 0.01 0.8 100 - 0.41 10% -
FFGA 0.01 0.8 100 - 0.41 - -

Table 2: Experimental MOEA parameters

12

solutions. A parallel MOEA using only 1 processor differs from a sequential execution because
it uses a collector process storing non-dominated solutions as the evolutionary process proceeds,
introducing a sort of elitism.

The implemented MOEAs use the following parameters [24] (see Table 2):

• Genetic population size (N): 100

• External population size (N ′): 100

• Crossover probability (pc): 0.8

• Mutation probability (pm): 0.01

• Niching radius (σshare): 0.41

• Domination pressure (tdom): 10

• Reduction rate (tred): 0.7

To conduct the experiments a cluster of twenty personal computers connected by a 100 Mbps
Ethernet LAN was used. Each node in the cluster has one 700 MHz AMD K6-2 CPU with 128
MB of RAM and runs the Red Hat Linux 7.3 operating system and PVM 3.4.4. Programs were
implemented using the C language.

4.2 Metrics

Having several optimization criteria, it is not clear what quality of a solution means. For example,
it may refer to the closeness to the optimal front, the number of solutions, the spread of solutions,
etc. In fact, in [25] three general goals are identified:

1. The size of the obtained Pareto front should be maximized, i.e., a wide range of Pareto
solutions is preferred.

2. The distance of the obtained Pareto front to the true Pareto-optimal front should be mini-
mized.

3. A good distribution of solutions, usually in objective space, is desirable.

Then, in order to evaluate experimental results from the implemented algorithms a set of metrics
is used, this comparison itself being multi-objective. Explanations of the selected metrics can be
found in [26]. However, it is important to note their most important aspects:

• Overall non-dominated vector generation (ONV G): This metric reports the number of solu-
tions in PFknown. It is expected that good algorithms have a large number of solutions.

ONV G metric is defined as:
ONV G = ||PFknown|| (7)

where || · || represents cardinality.

13

• Overall true non-dominated vector generation (OTNV G): counts the number of solutions in
PFknown that are also in PFtrue and is defined as:

OTNV G = ||{ x | x ∈ PFknown ∧ x ∈ PFtrue }|| (8)

• Maximum Pareto Front Error (ME): This metric indicates the largest distance between a
point in PFknown and its nearest neighbor in PFtrue. Thus, all the other points in Pknown

are closer to Ptrue than this worst-case distance. A value of 0 is ideal. The ME metric is
formally defined as follows:

ME = max({dmin
1 , dmin

2 , . . . , dmin
n }) (9)

where dmin
i is the Euclidean distance (in objective space) between each vector in PFknown

and its nearest neighbor in PFtrue and n is the number of points in PFknown

• Spacing (S): this metric serves as indicator of the distribution of solutions in PFknown and
is based on the average (arithmetic mean) distance of each point from its nearest neighbor.

The spacing metric is mathematically defined as:

S =

√√√√ 1
n − 1

n∑
i=1

(dmin − dmin
i)2 (10)

where the average dmin is defined as:

dmin =
∑n

i=1 dmin
i

n
(11)

An ideal value for the spacing metric is 0.

Since some of these metrics require PFtrue to be computed, an approximation of it was calculated
from the non-dominated solutions in the union set of all obtained results. This experimental set is
taken as the PFtrue of reference.

ONV G and OTNV G are used in combination to measure the size and quality of the set of
calculated solutions. Both are considered because ONV G alone is a very poor indicator of the
comparable quality between two sets. A given MOEA could produce a hundred of non-dominated
points that are very close to the true Pareto Front, while another MOEA could produce a thousand
points far from PFtrue. With ONV G, the latter would appear to be better. Since an approximation
set is used, OTNV G appears to be a better metric to compare the quality of the solutions. Note
that using both metrics, an error rate can be easily computed.

4.3 Results

Table 3 presents the average values for ONV G obtained in 10 executions of each different imple-
mentation. The first column indicates if the implementation is sequential or parallel (pMOEA),
providing the number of processors; the first row indicates the considered MOEA. It can be seen

14

Run FFGA NPGA NSGA NSGA-II CNSGA-II SPEA
Sequential 32.8 63.7 94.8 175 157.1 209.4
1 Processor 75.1 93.4 160.2 202.6 175.8 233.7
2 Processors 95.6 121.2 193.6 240.4 192.7 265.3
4 Processors 123.7 155.2 258.9 278 228.7 254.1
8 Processors 148.4 188.4 313.8 292.7 255.3 254.9
16 Processors 176.5 240.5 395.3 277.5 289.8 303.9

Table 3: Average values of ONV G metric for the different runs

MOEA Run Average Median Minimum Maximum Standard
Deviation

SPEA Sequential 7.30 1.0 0.0 34.0 11.441
1 Processor 7.40 1.0 0.0 34.0 11.530
2 Processors 18.40 5.0 0.0 44.0 19.603

pSPEA 4 Processors 27.70 16.0 0.0 67.0 25.408
8 Processors 33.40 23.0 3.0 98.0 30.160
16 Processors 69.20 51.0 17.0 162.0 42.150

NSGA-II Sequential 52.80 53.0 28.0 72.0 14.046
1 Processor 59.40 59.0 35.0 86.0 15.721
2 Processors 76.80 75.0 47.0 103.0 17.838

pNSGA-II 4 Processors 107.90 103.0 95.0 131.0 12.252
8 Processors 117.10 109.0 80.0 172.0 27.614
16 Processors 100.30 94.0 71.0 144.0 21.505

CNSGA-II Sequential 40.70 41.0 0.0 54.0 16.418
1 Processor 42.40 42.0 0.0 61.0 17.418
2 Processors 56.50 64.0 6.0 76.0 20.807

pCNSGA-II 4 Processors 77.60 76.0 59.0 91.0 8.847
8 Processors 102.80 105.0 80.0 114.0 10.412
16 Processors 121.60 121.0 104.0 143.0 10.135

Table 4: Statistics values for OTNV G metric

that the average ONV G value grows with the number of processors. The use of a separate pro-
cess storing non-dominated solutions improves the performance in this metric of first generation
non-elitist MOEAs (FFGA, NPGA and NSGA), making them competitive with elitist approaches,
especially as the number of processors grows. In fact, the best result for this metric is obtained by
the parallel implementation of NSGA using 16 processors.

In spite of the growing number of solutions for parallel implementations of FFGA, NPGA and
NSGA, they do not find any true Pareto solution. Specifically, OTNV G = 0 for every executed
run of these 3 algorithms. Thus, these algorithms do not provide any solution to the true Pareto
Front of reference.

In view of the inefficacy of the above MOEAs, only results obtained by SPEA, NSGA-II and
CNSGA-II are discussed in what follows. A complete set of results taking into account other
algorithms and metrics can be found in [23].

15

MOEA Run Average Median Minimum Maximum Standard
Deviation

SPEA Sequential 0.2825 0.1856 0.1539 0.4661 0.1310
1 Processor 0.2882 0.2430 0.1580 0.4661 0.1206
2 Processors 0.2258 0.1648 0.1230 0.4259 0.1096

pSPEA 4 Processors 0.2559 0.2591 0.1657 0.3431 0.0613
8 Processors 0.2449 0.2420 0.1796 0.3514 0.0527
16 Processors 0.2168 0.2002 0.1390 0.3436 0.0561

NSGA-II Sequential 0.1118 0.1004 0.0776 0.1667 0.0276
1 Processor 0.1460 0.1363 0.0801 0.3006 0.0605
2 Processors 0.1161 0.1040 0.0756 0.2018 0.0353

pNSGA-II 4 Processors 0.1367 0.1239 0.0583 0.2711 0.0570
8 Processors 0.1148 0.1031 0.0860 0.1494 0.0229
16 Processors 0.1437 0.1268 0.0876 0.2434 0.0452

CNSGA-II Sequential 0.1334 0.1213 0.0747 0.3439 0.0766
1 Processor 0.1569 0.1231 0.0906 0.4086 0.0936
2 Processors 0.2045 0.1791 0.1239 0.4421 0.0908

pCNSGA-II 4 Processors 0.1497 0.1263 0.0880 0.2442 0.0558
8 Processors 0.1440 0.1283 0.0867 0.2394 0.0423
16 Processors 0.1486 0.1239 0.0876 0.2897 0.0605

Table 5: Statistics for ME metric

In Table 4 some statistical values for the OTNV G metric are presented. The average value is
computed by adding the OTNV G values of 10 executions and dividing by 10. Median, maximum,
minimum and standard deviation values [27] are also computed. The median is the middle value
of the set when ordered by value.

As can be noted, the best average value for this metric is obtained by a parallel implementation
of CNSGA-II using 16 processors. On average an execution of pCNSGA-II with 16 processes reports
121.6 solutions that belongs to the true Pareto-optimal set. There are three times more solutions
than with the corresponding sequential run.

Considering the OTNV G metric for SPEA, the effect of parallelization is even more impressive.
For SPEA, the average value is biased by some very good executions; thus, the median value is
a better indicator for the distribution of OTNV G. Note that the SPEA median value for the
OTNV G metric is just 1 for the sequential implementation, increasing to 51 for pSPEA with 16
processors.

Minimum and maximum values of OTNV G also improve with the number of processors. Note
that as minimum and maximum pCNSGA-II values increase, the differences between them are
reduced, as happens with the standard deviation, i.e., pCNSGA-II becomes more stable. On the
contrary, the same difference and the standard deviation increase with the number of processors
for pSPEA implementations, while no clear relation is observed with pNSGA-II. In conclusion,
considering the number of true Pareto-optimal solutions found, pCNSGA-II may be considered as
the most stable implementation as the number of processors increases.

Table 5 shows values for the metric ME. As can be noted, the average values are of the same
order as the number of processors increases, yet the maximum ME decreases for the general case.

16

MOEA Run Average Median Minimum Maximum Standard
Deviation

SPEA Sequential 0.2825 0.1856 0.1539 0.4661 0.1310
Sequential 0.0321 0.0319 0.0237 0.0444 0.0057
1 Processor 0.0313 0.0305 0.0265 0.0402 0.0037
2 Processors 0.0297 0.0273 0.0256 0.0362 0.0041

pSPEA 4 Processors 0.0277 0.0266 0.0229 0.0352 0.0041
8 Processors 0.0302 0.0307 0.0230 0.0363 0.0036
16 Processors 0.0314 0.0302 0.0242 0.0417 0.0053

NSGA-II Sequential 0.0289 0.0293 0.0222 0.0330 0.0035
1 Processor 0.0275 0.0272 0.0206 0.0359 0.0046
2 Processors 0.0238 0.0228 0.0185 0.0285 0.0032

pNSGA-II 4 Processors 0.0218 0.0208 0.0176 0.0298 0.0038
8 Processors 0.0211 0.0202 0.0188 0.0246 0.0019
16 Processors 0.0249 0.0242 0.0208 0.0294 0.0027

CNSGA-II Sequential 0.0303 0.0286 0.0245 0.0446 0.0059
1 Processor 0.0278 0.0249 0.0216 0.0373 0.0056
2 Processors 0.0332 0.0296 0.0258 0.0471 0.0071

pCNSGA-II 4 Processors 0.0266 0.0270 0.0205 0.0296 0.0028
8 Processors 0.0251 0.0243 0.0210 0.0316 0.0039
16 Processors 0.0241 0.0243 0.0197 0.0290 0.0027

Table 6: Statistics for the Spacing metric

To evaluate this metric the column maximum of Table 5 will be considered. This column provides
the value of the worst ME considering 10 executions of a certain MOEA. Therefore, it is an upper
bound on the error strip for a given run. Consequently, the minimum of such values provides the
best worst-value; it indicates that other solutions of the considered algorithm are closer to the true
Pareto-optimal front. With these considerations, it can be noted that pNSGA-II using 8 processors
provides solution sets with the lowest upper ME.

The last metric to be considered is Spacing. Table 6 shows results for this metric. It can be
seen that values are very close to the optimum (0). Taking into account average S values, parallel
MOEAs are better than their sequential versions, and the best value is obtained with pNSGA-II
using 8 processors.

In summary, parallel implementation of MOEAs find a larger number of solutions (ONV G
& OTNV G), better solutions (OTNV G & ME), and are also better distributed (S) than their
sequential counterparts.

5 Conclusions

A parallel asynchronous model for multi-objective evolutionary optimization was presented and
applied to six recognized MOEAs to solve an optimal pump-scheduling problem considering four
minimization objectives. Various executions of parallel and sequential implementations were con-
ducted and their results compared, using a set of metrics.

17

Algorithm Run OTNV G ONV G ME Spacing
CNSGA-II 16 Processes 121.6 289.8 0.1486 0.0241
NSGA-II 8 Processes 117.1 292.7 0.1148 0.0211
NSGA-II 4 Processes 107.9 278.0 0.1367 0.0218

CNSGA-II 8 Processes 102.8 255.3 0.1440 0.0251
NSGA-II 16 Processes 100.3 277.5 0.1437 0.0249

Table 7: Ranking of top 5 runs

To have a notion of goodness of the different solution sets, the following lexicographical order
of average metric values is finally considered:

1. OTNV G,

2. ONV G,

3. ME,

4. Spacing.

Table 7 shows a ranking of algorithms using the aforementioned lexicographic order of metrics.
As can be seen, the best position is obtained by CNSGA-II with 16 processors. However, it should
be emphasized that another algorithm would be considered the best one using another preference
between metrics.

Our experimental results have shown that parallel evolutionary algorithms are capable of provid-
ing a larger number of better alternatives for pump scheduling than their sequential counterparts.

We also showed that solutions provided by first generation MOEAs are worse than the ones
obtained by elitism-based MOEAs considering the number of solutions they found in a reference
PFtrue.

Improvement of parallel over sequential MOEAs has various reasons. First, parallel implementa-
tions explore in larger areas than sequential ones, since they handle a larger number of populations.
Second, the cooperation between the different populations produces synergy in searching for good
solutions. Finally, the collector procedure reinforces elitism in the evolutionary process of SPEA,
NSGA-II and CNSGA-II, storing solutions that otherwise may be lost.

References

[1] L. Mays, Water Distribution Systems Handbook. New York: McGraw-Hill, 2000.

[2] T. M. W. et all., Advanced Water Distribution Modeling and Management. Waterbury, CT:
Haestead Press, 2003.

[3] L. E. Ormsbee and K. E. Lansey, “Optimal Control of Water Supply Pumping Systems,”Water
Resources Planning and Management Journal, 1994.

18

[4] K. E. Lansey and K. Awumah, “Optimal Pump Operations Considering Pump Switches,”
Water Resources Planning and Management Journal, vol. 1, no. 120, 1994.

[5] D. Mackle, A. Savic, and G. A. Walters, “Application of Genetic Algorithms to Pump Schedul-
ing for Water Supply,” in GALESIA 95, (London, UK), 1995.

[6] D. A. Savic, G. A. Walters, and M. Schwab, “Multiobjective Genetic Algorithms for Pump
Scheduling in Water Supply,” in AISB International Workshop on Evolutionary Computing.
Lecture Notes in Computer Science 1305, (Berlin), pp. 227–236, Springer-Verlag, Apr. 1997.

[7] W. Schaetzen, “A Genetic Algorithm Approach for Pump Scheduling in Water Supply Sys-
tems,” tech. rep., Water Systems group, School of Engineering, University of Exeter, United
Kingdom, 1998.

[8] C. von Lücken, A. Sotelo, and B. Barán, “Multiobjective Evolutionary Algorithms in Pump
Scheduling Optimisation,” in Proceedings of the Third International Conference on Engineering
Computational Technology (B. Topping and Z. Bittnar, eds.), (Stirling, United Kingdom),
Civil-Comp Press, 2002.

[9] C. von Lücken and B. Barán, “Multi-objective Evolutionary Algorithms Experimental Com-
parison,” in Conferencia Internacional de Tecnoloǵıas y Aplicaciones Informáticas, (Asunción,
Paraguay), 2001.

[10] C. von Lücken, B. Barán, and A. Sotelo, “Pump Scheduling Optimisation Using Parallel Mul-
tiobjective Evolutionary Algorithms,” in XXVII Conferencia Latinoamericana de Informática
CLEI-2003, (La Paz, Bolivia), 2003.

[11] F. M. Dolqachev and N. N. Pashkov, Hydraulics and Hydraulic Machines. Mir, 1985.

[12] E. Cantu-Paz, “Designing Efficient and Accurate Parallel Genetic Algorithms,” Tech. Rep.
2108, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois, 1999.

[13] D. A. van Veldhuizen, J. B. Zydallis, and G. B. Lamont,“Considerations in Engineering Parallel
Multiobjective Evolutionary Algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 7, pp. 144–173, Apr. 2003.

[14] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative Case Study
and the Strength Pareto Approach,” IEEE Transactions on Evolutionary Computation, vol. 3,
pp. 257–271, November 1999.

[15] D. A. van Veldhuizen and G. B. Lamont, “On Measuring Multiobjective Evolutionary Algo-
rithm Performance,” in 2000 Congress on Evolutionary Computation, vol. 1, (Piscataway, New
Jersey), pp. 204–211, IEEE Service Center, July 2000.

[16] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiobjective Optimization: For-
mulation, Discussion and Generalization,” in Proceedings of the Fifth International Conference
on Genetic Algorithms (S. Forrest, ed.), (San Mateo, California), pp. 416–423, University of
Illinois at Urbana-Champaign, Morgan Kauffman Publishers, 1993.

19

[17] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm for Multiob-
jective Optimization,” in Proceedings of the First IEEE Conference on Evolutionary Computa-
tion, IEEE World Congress on Computational Intelligence, vol. 1, (Piscataway, New Jersey),
pp. 82–87, IEEE Service Center, June 1994.

[18] N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondominated Sorting in Genetic
Algorithms,” Evolutionary Computation, vol. 2, pp. 221–248, Fall 1994.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA–II,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–197,
April 2002.

[20] K. Deb and T. Goel, “Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better
Convergence,” in First International Conference on Evolutionary Multi-Criterion Optimization
(E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, eds.), pp. 67–81, Springer-
Verlag. Lecture Notes in Computer Science No. 1993, 2001.

[21] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results,” Evolutionary Computation, vol. 8, pp. 173–195, Summer 2000.

[22] R. Purshouse and P. Fleming, “The Multi-Objective Genetic Algorithm Applied to Benchmark
Problems—An Analysis,” Tech. Rep. 796, Department of Automatic Control and Systems
Engineering, University of Sheffield, Sheffield, UK, August 2001.

[23] C. von Lücken,“Algoritmos Evolutivos para Optimización Multi-objetivo: un Estudio Compar-
ativo en un Ambiente Paralelo Aśıncrono,”Master’s thesis, Universidad Nacional de Asunción,
San Lorenzo, Paraguay, December 2003.

[24] C. A. Coello Coello, “A Short Tutorial on Evolutionary Multiobjective Optimization,” in First
International Conference on Evolutionary Multi-Criterion Optimization (E. Zitzler, K. Deb,
L. Thiele, C. A. Coello Coello, and D. Corne, eds.), pp. 21–40, Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

[25] J. Knowles and D. Corne, “On Metrics for Comparing Nondominated Sets,” in Congress on
Evolutionary Computation (CEC’2002), vol. 1, (Piscataway, New Jersey), pp. 711–716, IEEE
Service Center, May 2002.

[26] D. A. van Veldhuizen, Multiobjective Evolutionary Algorithms: Classifications, Analyses, and
New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate
School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May
1999.

[27] I. Miller, J. Freund, and R. Johnson, Probability and Statistics for Engineers, Four Ed. New
York: Prentice Hall, 1998.

20

