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ABSTRACT
This work presents two multiobjective algorithms for Multicast
Traffic Engineering. The proposed algorithms are new versions
of the Multi-Objective Ant Colony System (MOACS) and the
Max-Min Ant System (MMAS), based on Ant Colony
Optimization (ACO). Both ACO algorithms simultaneously
optimize maximum link utilization and cost of a multicast
routing tree, as well as average delay and maximum end-to-end
delay, for the first time using an ACO approach. In this way, a
set of optimal solutions, know as Pareto set is calculated in only
one run of the algorithms, without a priori restrictions.
Experimental results show a promising performance of both
proposed algorithms for a multicast traffic engineering
optimization, when compared to a recently published
Multiobjective Multicast Algorithm (MMA), specially designed
for Multiobjective Multicast Routing Problems.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols – Routing protocols.

General Terms
Algorithms and Experimentation.

Keywords
Traffic Engineering, Ant Colony Optimization, Multicast
Routing, Multiobjective Optimization.

1. INTRODUCTION
Multicast consists of simultaneous data transmission from a
source node to a subset of destination nodes in a computer
network [1]. Multicast routing algorithms have recently received
great attention due to increased use of recent point-to-multipoint
applications, such as radio and TV transmission, on-demand
video, teleconferences and so on. Such applications generally
require several quality-of-service (QoS) parameters such as
maximum end-to-end delay and minimum bandwidth resources,

subject to optimization with a traffic-engineering scheme.

When a dynamic multicast problem considers several traffic
requests, not only QoS parameters must be considered, but also
load balancing and network resources utilization must be taken
into account. In order to avoid hot spots and to balance the
network load, a common approach is to minimize the utilization
of the most heavily used link in the network or maximum link
utilization [2]. Therefore, cost minimization of the tree of each
multicast group, which is given by the sum of the cost of the used
links, is also desired. It is known that the complexity of
computing the minimum cost tree for a given multicast group is
NP-hard [3]. Then, this paper presents new ACO versions of the
Multi-Objective Ant optimization System (MOACS) [4] and the
Max-Min Ant System (MMAS) [5], finding a set of optimal
solutions by simultaneously optimizing four objective functions:
(1) maximum link utilization, (2) cost of the multicast tree, (3)
maximum end-to-end delay and (4) average delay. In this way, a
whole Pareto set of optimal solutions can be obtained in only one
run on the proposed algorithms. For theoretical studies a whole
Pareto set is computed. The selection of one solution of this
Pareto set is studied in [6].

To verify the performance of the proposed algorithms,
simulations were carried out with different sizes of multicast
groups on diverse topology networks. The two proposed
algorithms were compared to a Multiobjective Optimization
Evolutionary Algorithm (MOEA) specially designed to solve that
multicast routing problem, the recently published Multicast
Multiobjective Algorithm (MMA) [7, 8, 9] based on the Strength
Pareto Evolutionary Algorithm (SPEA) [10].

The remainder of this work is organized as follows. Section 2
describes related publications. A general definition of a
multiobjective problem is presented in Section 3. The problem
formulation and the objective functions are given in Section 4.
Ant Colony Optimization approach is explained in Section 5. The
two proposed algorithms are explained in Section 6 and Section
7, respectively. The Multicast Multiobjective Algorithm (MMA)
is summarized in Section 8 while the experimental environment
is shown in Section 9. Section 10 presents experimental results.
Finally, conclusions and future works are left for Section 11.

2. RELATED WORK
Several algorithms based on ACO consider the multicast routing
as a mono-objective problem, minimizing the cost of the tree
under multiple constraints. In [11] Liu and Wu propose the
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construction of a multicast tree, where only the cost of the tree is
minimized using a degree constraints. On the other hand, Gu et
al. considered multiple parameters of QoS as constraints,
minimizing just the cost of the tree [12]. It can be clearly noticed
that previous algorithms treat the Multicast Traffic Engineering
problem as a mono-objective problem with several constraints.
The main disadvantage of these approaches is the necessity of an
a priori predefined upper bound that can exclude good practical
solutions.

In [13], Donoso et al. proposed a multi-tree traffic-engineering
scheme using multiple trees for each multicast group. They took
into account four metrics: maximum link utilization (α), hop
count, bandwidth consumption and total end-to-end delay. The
method minimizes a weighted sum function composed of the
above four metrics. Considering the scheme is NP-hard, the
authors proposed a heuristic algorithm consisting of two steps:

1. Obtaining a modified graph, where all possible paths between
the source node and every destination node are looked for.
2. Finding out the solution trees, based on the distance values
and the available capacity of the paths, in the modified graph.

Recently, Crichigno and Barán [7, 8, 9] have proposed a
Multiobjective Multicast Algorithm (MMA), based on the
Strength Pareto Evolutionary Algorithm (SPEA) [10], which
simultaneously optimizes maximum link utilization, cost of the
tree, maximum end-to-end delay and average delay. The MMA
algorithm finds a set of optimal solutions, which is calculated in
only one run, without a priori restrictions; therefore, it will be
used in this paper as a reference for comparison.

3. MULTIOBJECTIVE OPTIMIZATION
PROBLEMS
A general Multiobjective Optimization Problem (MOP) [14]
includes a set of n decision variables, k objective functions, and
m restrictions. Objective functions and restrictions are functions
of decision variables. This can be expressed as:

Optimize y = f(x) = (f1(x), f2(x), , fk(x)).
Subject to e(x) = (e1(x), e2(x), , em(x)) 0,
  where x = (x1, x2, , xm) ∈  X is the decision vector,
  and y = (y1,y2 ,yk) ∈ Y is the objective vector.

X denotes the decision space while the objective space is denoted
by Y. Depending on the kind of the problem, “optimize” could
mean minimize or maximize. The set of restrictions e(x) 0
determines the set of feasible solutions Xf ⊆ X and its
corresponding set of objective vectors Yf ⊆ Y. A multiobjective
problem consists in finding x that optimizes f(x). In general,
there is no unique “best” solution but a set of solutions, none of
which can be considered better than the others when all
objectives are considered at the same time. This derives from the
fact that there can be conflicting objectives. Thus, a new concept
of optimality should be established for MOPs. Given two
decision vectors u, v ∈ Xf :

f(u) = f(v) iff ∀i∈{1,2,...,k}:  fi(u) = fi(v)
f(u) f(v)   iff ∀i∈{1,2,...,k}:  fi(u)  fi(v)
f(u) < f(v)    iff f(u) f(v) ∧ f(u) f(v)

Then, in a minimization context, u and v comply with one and
only one of the following three conditions:

 u v (u dominates v), iff: f(u)<f(v)
 v u (v dominates u), iff: f(v)<f(u)
 u ~ v (u and v are non-comparable),

iff: f(u)  f(v) f(v) f(u)

Alternatively, for the rest of this work, u v will denote that u
dominates or is equal to v. A decision vector x∈Xf is non-
dominated with respect to a set Q ⊆ Xf iff: u v, ∀v∈Q. When x
is non-dominated with respect to the whole set Xf, it is called an
optimal Pareto solution; therefore, the Pareto optimal set Xtrue
may be formally defined:

Xtrue =  {x∈Xf | x is non-dominated with respect to Xf}. The
corresponding set of objective vectors Ytrue=  f(Xtrue) constitutes
the Optimal Pareto Front.

4. PROBLEM FORMULATION
For this work, a network is modeled as a direct graph G=(V, E),
where V is the set of nodes and E is the set of links. We assume a
network with a reservation model and QoS guarantees.
Let be:

(i,j) ∈ E:  Link from node i to node j; i, j ∈ V.
cij ∈ ℜ+:  Cost per bps of link (i,j).
dij ∈ ℜ+:  Propagation Delay of link (i,j). Queuing delay is not

considered for this model.
zij ∈ ℜ+:  Capacity of link (i,j).
tij ∈ ℜ+:  Current traffic of link (i,j).
S ∈ V :  Source node of a multicast group.
Nr ⊆V-{s}: Set of destinations of a multicast group.
ni ∈ Nr :  One of |Nr| destinations, where |.| indicates

cardinality.
φ ∈ ℜ+:  Traffic demand, in bps.
T(s,Nr) :   Multicast tree with source in s and set of

destinations Nr.
pT(s, ni) ⊆T(s,Nr): Path connecting source s to a destination

ni∈Nr. Note that T(s,Nr) represent a solutions x in
Section 3.

d(pT(s, ni)): Delay of the path pT(s,ni), given by:
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Using the above definitions, a multicast routing problem for
Traffic Engineering may be stated as a MOP that tries to find the
multicast tree T(s,Nr) that simultaneously minimizes the
following objective functions:

1- Maximum link utilization of the tree:
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2- Cost of the multicast tree:
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3- Maximum end-to-end delay of a multicast tree:
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4- Average delay of a multicast tree:
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The problem is subject to a link capacity constraint:

)NT(s,ji,zijtij r∈∀≤+ )(φ (6)

Notice that x = T(s, Nr) and y = [α(T)  C(T)  DM(T)  DA(T)]. A
simple example follows to clarify the notation defined above.

Example 1. Given the network topology of Figure 1 [7], the
numbers over each link (i,j) denotes dij in ms, cij and tij at the
current time (in Mbps). For each link, zij=1.5 Mbps. Let suppose
a traffic request arriving with φ = 0.2 Mbps, s=5, and N ={0, 2, 6,
13}. Figure 1 shows the multicast tree (T) constructed with
MMA. For this work T≡T(s,Nr)  for further simplicity.

Figure 1: The NSF Net. dij, cij and tij are shown over each
link. Objective Functions are α(T)=0.73, C(T)=6.4,
DA(T)=16.5, DM(T)=23. Multicast group: s=5 &
Nr={0,2,6,13}.

Table 1 presents the objective functions calculated for the
solution of Figure 1.

For the same example, Figure 2 presents in (a), (b) and (c) three
different alternatives of solution trees, for the same multicast
group, to clarify the concept of non-dominance. Notice that each
tree is better than each other in at least one objective.

It is important to notice, from the mathematical formulation that
the four objective functions are treated independently and should
be minimized simultaneously. They are not combined to form a
scalar single-objective function through a linear combination (as
weighted sum) nor are any of them treated as a restriction. This
way, using the concept of dominance, a whole set of optimal
Pareto solutions is calculated in one run.

For the presented example the set of optimal Pareto set is shown
in Table 2. The objectives functions are presented in Table 3.
Notice that solution S1 corresponds to Figure 2(a), S2 corresponds
to Figure 2(b) and S3 corresponds to Figure 3(c).

Table 1: Objective Functions Calculated for Example 1

Tree
(i,j) (5,4) (4,2) (2,0) (5,6) (6,9) (9,13)
dij 7 7 9 7 7 8
cij 6 4 2 1 10 9
tij 0.1 0.1 0.9 0.6 0.7 0.8

(φ+tij)/zij 0. 2 0.2 0.73 0.53 0.6 0.53
d(pT(5,4)) d5,4 = 7
d(pT(5,2)) d5,4 + d4,2 =7+7=14
d(pT(5,0)) d5,4 + d4,2 + d2,0 =7+7+9=23
d(pT(5,6)) d5,6 =  7
d(pT(5,13)) d5,6 + d6,9 + d9,13 =7+7+8=22

Metrics of the solution Tree
α(T) 0.73
C(T) 0.2*(6+4+2+1+10+9) = 6.4

DA(T) (7+14+16+7+22)/4 = 16.5
DM(T) 23

(a) α(T)=0.73, C(T)=5.0, DA(T)=20.0, DM(T)=36.

(b) α(T)=0.6, C(T)=8.6, DA(T)=21.75, DM(T)=36.0

(c) α(T)=0.67, C(T)=7.6, DA(T)=19.75, DM(T)=36.0

Figure 2: The NSF Net. (a) to (c) shown different alternatives
tress for the multicast group with s=5, Nr={0, 2, 6, 13} and
φ=0.2 Mbps.



Table 2: Optimal Pareto set for Example 1

Tree
S1 (5,4),(5,6),(4,2),(4,10),(2,0),(10,12),(12,13)
S2 (5,6),(5,4),(6,1),(6,9),(4,2),(1,0),(9,8),(8,12),(12,13)
S3 (5,6),(5,4),(6,1),(6,9),(4,2),(1,0),(9,13)
S4 (5,6),(5,4),(6,9),(4,2),(9,13),(2,0)
S5 (5,6),(5,4),(6,1),(4,2),(4,10),(1,0),(10,12),(12,13)
S6 (5,6),(5,4),(6,1),(4,2),(4,10),(1,0),(10,12),(12,13)
S7 (5,6),(6,1),(1,0),(0,3),(0,2),(3,10),(10,12),(12,13)
S8 (5,6),(5,4),(6,1),(4,2),(1,0),(2,7),(7,13)
S9 (5,6),(5,4),(4,2),(4,10),(10,12),(10,3),(12,13),(3,0)
S10 (5,6),(5,4),(4,10),(10,3),(10,12),(3,0),(12,13),(0,2)

Table 3: Objectives Vectors

α(T) C(T) DA(T) DM(T)
S1 0.73 5 20 36
S2 0.6 8.6 21.75 36
S3 0.67 7.6 19.75 36
S4 0.73 6.4 16.50 23
S5 0.73 4 26.75 63
S6 0.6 6.2 23.25 36
S7 0.73 3.6 41 76
S8 0.53 7 23.75 38
S9 0.6 5.2 24.25 4
S10 0.73 4.8 33 49

5. ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) is a metaheuristic inspired by
the behavior of ant colonies [15]. In the last few years, ACO has
received increased attention by the scientific community as can
be seen by the growing number of publications and the different
fields of application [5]. Even though, there are several ACO
variants, what can be considered a standard approach is next
presented [16].

ACO is especially appealing when constructing solutions are
needed, therefore, it seem interesting to study its application to
the Multicast Problem.

Standard Approach. ACO uses simple agents called ants and  a
pheromone matrix τ={τij} for constructing iteratively candidate
solutions. The initial values is τij=τ0 ∀(i,j)∈E, where τ0>0.
Furthermore, it takes advantage of heuristic information using a
parameter ηij=1/dij called visibility. The relative influence
between the heuristic information and the pheromone levels are
define for parameters α and β. While an ant is visiting node i, Ni
represents the set of neighbor nodes that are not yet visited. The
probability of choosing a node j while at node i, is defined in the
equation (7).
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At every generation of the algorithm, each ant of a colony
constructs a complete solution T using (7), starting at source

node s. Pheromones evaporation is applied for all (i,j) according
to τij=(1-ρ).τij, where parameter ρ∈(0;1] determines the
evaporation rate. Considering an elitist strategy, the best
solutions found so far Tbest updates τ according to τij=τij + ∆τ,
where ∆τ(i,j)=1/f(Tbest) if (i,j)∈Tbest and ∆τ(i,j)=0 if (i,j)∉Tbest.

Note that the standard approach optimizes a single objective. In
the next Sections this work presents a multiobjective approach
based on the presented standard ACO.

6. MULTIOBJECTIVE ANT COLONY
OPTIMIZATION
Following the Multi-Objective Ant Colony Optimization
Algorithm (MOACS) scheme [4], which is a generalization of the
ACS [17], the proposed algorithm uses a colony of ants (or
agents) and pheromone matrix τ={τij} for the construction of w
solutions T at every generation. This new approach also takes
advantage of three heuristics information of the multicast routing
problem, using ηdij=1/dij, ηcij=1/cij and ηtij=1/tij. Parameters α
and β define the relative influence between the heuristics
information and the pheromone levels.

Additionally, this work also proposes variables λd, λc and λt,
which define the relative influence among heuristics information.
Then, a known Pareto Front Yknown [14] is updated including the
best non-dominated solutions that have been calculated so far.
Finally, the gathered information is saved updating a pheromone
matrix τij. Figure 2 presents the general procedure of the
proposed MOACS. In general, if the state of Yknown was changed,
the pheromone matrix τij is re-initialized (τij=τ0 ∀(i,j)∈E) to
improve exploration in the decision space X. Otherwise, τij is
globally updated using the solutions of Yknown to better exploit the
knowledge of the best known solutions. Note that only the links
of found solutions T in Yknown are used to update the pheromone
matrix τij.

begin MOACS
  Read group (s, Nr), traffic demands φ, table tij, α, β and ρ
  Initialize τij with τ0 /*τ0 is the initial level of τij
  do {
       for λd = 0 to m-1
            for λc = 0 to m-1

λt = m-1- λc

                  T = Build Tree (α, β, ρ, λd, λc, λt, φ, (s, Nr), tij)
                  if (T is not dominated by any Tx ∈ Yknown) then

Yknown = Yknown ∪ T – {Ty | T Ty},∀Ty ∈ Yknown
           end if

            end for
       end for
       if (Yknown was modified) then

τij = τ0 ∀(i,j) ∈ E
else

          repeat ∀Tk ∈ Yknown

τij = (1-ρ).τij + ρ.∆τk ∀(i,j) ∈Tk
          end repeat
        end if
   } while stop criterion is not verified
  Return Yknown

end MOACS

Figure 2: General Procedure of MOACS.
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with:
α(Tk) -normalized maximum link utilization, given by (2)
C(Tk) -normalized solution cost, given by (3)
DA(Tk) -normalized maximum end-to-end delay, given by (4)
DM(Tk) -normalized average delay, given by (5)
ρ ∈ (0, 1] - trail persistence.
For normalization purposes, each objective function is divided by
and a priori maximum value.

To construct a solution, an ant begins its job in the source node s.
A non-visited node is pseudo-randomly selected at each step [4].
The pseudo-random procedure is presented in Figure 3, while
equation (9) gives the probability to select a link. This process
continues until all the destination nodes of the multicast group
are reached. Considering R as the list of starting nodes, Ni as the
list of feasible neighboring nodes to the node i, Dr as the set of
destination nodes already reached. Procedure to find a solution T
is summarized in Figure 4.

begin
   Select randomly q          /* q, q0 ∈ (0,1]
   if q > q0 then
      Choose node j with larger pij

   else
      Randomly choose j using probability pij

   end if
end

Figure 3: Pseudo-random Rule for selecting a node j of Ni.

The following is the probability assigned to link (i,j) with three
heuristic visibilities:
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begin Build Tree
   Read α, β, ρ, λd, λc, λt, φ, (s, Nr), tij
   T = ∅; Dr = ∅; R = s
   do {
       Select node i of R and build set Ni

       if (Ni = ∅) then
          R = R – i;            /* erase node without feasible neighbor
       else
          Assign probability pij to each node of Ni

          Select node j of Ni using Pseudo-random Rule
          T = T ∪ (i, j);   R = R ∪ j;
          if (j ∈ Nr) then
               Dr = Dr ∪ j         /* node j is a destination node
          end if
       end if

τij = (1 - ρ).τij + ρ.τ0   /* update pheromone
   } while (R ≠ ∅ or Dr ≠ Nr)
   Prune Tree T                /* eliminate not used links
   Return T
end Build Tree

Figure 4: Procedure to Build Tree.

7. MULTIOBJECTIVE MAX-MIN ANT
SYSTEM.
The standard Max-Min Ant System (MMAS) presented by
Stützle and Hoos [5], was derived from the standard ACO [16]
and it incorporated three key features to achieve a better
performance:

- Only the best solution at each iteration or during the
execution of the algorithm updates the pheromone trail τ.

- A range [τmin,τmax] is imposed to τ components. The upper
level may be calculated as τmax=1/(f(T).(1-ρ)) while the lower
level as τmin=τmax/2.w, where w is the number of ants at each
generation.

- Initialize the pheromone trails with τmax, achieving a high
exploration at the start of the algorithm.

Given that MMAS is mono-objective; this work modifies MMAS
to solve multiobjective problems, with the following changes:

-  The new Multiobjective MMAS (or more simply, M-MMAS)
finds a whole set of Pareto optimal solutions called Yknown
instead of finding a single optimal solution.

- To guide the ants in the search space, three heuristics
information are proposed: ηdij=1/dij, ηcij=1/cij and ηtij=1/tij.
Variables λd, λc and λt determine the relative influence
among heuristics information. Therefore, the probability of
choosing a node j while an ant visits node i, is given by
equation (9).

- The pheromone matrix τ is updated according to τij=τij+∆τk

∀(i,j)∈Tk and ∀Tk∈Yknown up to an upper level τmax=∆τk/(1-ρ)
and not below a minimum level τmin=∆τk/2w(1-ρ). The
pheromone level ∆τk, is given by equation (8).

Figure 5 presents the general M-MMAS procedure. The
algorithm builds a solution tree T using the same general ideas
used for the MOACS but with two small differences:

(a) the pheromone update, and
(b) it does not use pseudo-random rule (given in Figure 3).

begin M-MMAS
  Read group (s, Nr), traffic demands φ, table tij, α, β and ρ
  Initialize τij with τmax /*τmax is the initial level of τij
  do {
       for λd = 0 to m-1
            for λc = 0 to m-1

λt = m-1- λc /*Note that w=m.m
                  T = Build Tree (α, β, ρ, λd, λc, λt, φ, (s, Nr), tij)
                  if (T is not dominated by Tx ∈ Yknown) then

Yknown = Yknown ∪ T – {Ty ∈ Yknown | T Ty}
           end if

            end for
       end for

τij = (1-ρ).τij ∀(i,j)∈E
       if τij < τmin then τij = τmin ∀(i,j)∈E
       repeat ∀Tk∈Yknown

τij = τij + ∆τk ∀(i,j) ∈Tk

if τij > τmax then τij = τmax ∀(i,j)∈Tk
       end repeat
   } while stop criterion is not verified
    Return Yknown

end M-MMAS

Figure 5: General Procedure of the Multiobjective MMAS.



The election of links is carried out randomly with probability pij
given by equation (9). Initially, M-MMAS reads the parameters
and initializes the pheromone matrix τ. At each generation, w
solutions T are built. The set Yknown is updated with non-
dominates solutions T while dominated solutions of Yknown are
eliminated. To update pheromone matrix τ, evaporation is first
performed and pheromone is latter added ∀(i,j)∈Tk and
∀Tk∈Yknown.

8. MULTIOBJECTIVE MULTICAST
ALGORITHM
Multiobjective Multicast Algorithm (MMA), recently proposed in
[7, 8, 9], is based on the Strength Pareto Evolutionary Algorithm
(SPEA) [10]. MMA holds an evolutionary population P and an
external Pareto solution set Pnd. Starting with a random
population P of solutions, the individuals evolve to Pareto
optimal solutions to be included in Pnd. A general MMA
procedure is shown in Figure 6, while its codification is
represented in Figure 7.

MMA evolutionary algorithm begins reading the variables of the
problem and basically proceeds as follows (see pseudo-code in
Figure 6):

Build routing tables: For each ni∈Nr, a routing table is built. It
consists of the R shortest, R cheapest and R least used paths. R is
a parameter of the algorithm. A chromosome is represented by a
string of length |Nr| in which each element (gene) gi represents a
path between source s and destination ni. See Figure 7 to see a
chromosome that represents the tree in Figure 7.

begin MMA
   Read (s,Nr) , tij and φ
   Build routing tables
   Initialize P
   do {
      Discard individuals
      Evaluate individuals
      Update non-dominated set Pnd
      Compute fitness
      Selection
      Crossover and mutation
  } while stop criterion is not verified
end MMA

Figure 6: Procedure General of MMA.

Discard individuals: In P, there may be duplicated
chromosomes.

Thus, new randomly generated individuals replace duplicated
chromosomes.

Evaluate individuals: The individuals of P are evaluated using
the objective functions. Then, non-dominated individuals of P are
compared to the individuals in Pnd to update the non-dominated
set, removing from Pnd dominated individuals.

Compute fitness: Fitness is computed for each individual, using
SPEA procedure [10].

Selection: A roulette selection operator is applied over the set
Pnd∪P to generate the next evolutionary population P.

Crossover and Mutation: MMA uses two-point crossover
operator over selected pair of individuals. Then, some genes in
each chromosome of the new population are randomly changed
(mutated), obtaining a new solution. The process continues until
a stop criterion, as a maximum number of generations, is
satisfied.

Figure 7: Relationship between a chromosome, genes and
routing tables for a tree with s=0 and Nr={2, 3}.

9. EXPERIMENTAL ENVIRONMENT
Simulations were carried out using the NTT network topology
illustrated in Figure 8 [7]. We have performed many simulations
with many multicast groups along our simulations [18]. But, we
have chosen only two of them for brevity reasons. So, in Table 4
we show two multicast groups that were used for the experiments
that follow. For each group, experimental results are analyzed
after 160 and 320 seconds. Initially, the network was considered
50% randomly loaded on average, i.e. the initial traffic tij is
around 50% of its total load capacity zij.

Figure 8: Japan NTT network with 55 nodes and 144 links
used for the simulations. Over each link (i,j), a delay dij is
shown.

Three algorithms (MOACS, M-MMAS & MMA) have been
implemented on a 350 MHz AMDK6 computer with 128 MB of
RAM. A Borland C++ V 5.02 compiler was used. For these
experiments, the results of the proposed MOACS and M-MMAS
were compared to the evolutionary algorithm MMA [7, 8, 9].
Experimental results are summarized in Section 10.



Table 4: Multicast Group used for the tests. Each Group has
one source and | Nr| destinations

Test
Group

Source
{s}

Destinations
{Nr}

|Nr|

Group 1
(small) 5 {0,1,8,10,22,32,38,43,53} 9

Group 2
(large) 4 {0,1,3,5,6,9,10,11,12,17,19,21,22,

23,25,33,34,37,41,44,46,47,52,54} 24

To calculate an approximation to the true Pareto Front, Yapr, the
following six-step procedure was used:

1. Each algorithm (MOACS, M-MMAS & MMA) was run five
times and an average was calculated for comparison to each
other.
2. For each algorithm, five sets of non-dominated solutions: Y1,
Y2…Y5, were calculated, one for each run.

3. For each algorithm, overpopulation YT was obtained, where

U
5

1=

=
i

iT YY .

4. Dominated solutions were deleted from YT, obtaining the
Pareto Front calculated by each algorithm, as follows:

YMOACS (Pareto Front obtained with five runs, using MOACS),
YM-MMAS (Pareto Front obtained with five runs, using M-MMAS)
YMMA (Pareto Front obtained with five runs, using MMA).

5. A set of solutions Y’ was obtained as Y’=YMOACS∪YM-

MAS∪YMMA.

6. Dominated solutions were deleted from Y’, and an
approximation of Ytrue, called Yapr, is finally created. Note that for
practical issues Yapr≈Ytrue, i.e. Yapr is an excellent approximation
of Ytrue.

Table 5 presents the total number of solutions |Yapr| that were
experimentally found for each multicast group.

Table 5: Total number of non-dominated solutions belonging
to Yapr for each multicast group

Group 1 (small) Group 2 (large)
|Yapr| 30 56

10. EXPERIMENTAL RESULTS
The following tables show a comparison between the solutions
found with the implemented algorithms (MOACS, M-MMAS &
MMA) with respect to Yapr. At the same time, algorithms are
compared using the coverage figure of merit that counts the
average number of solutions dominated by the other algorithm’s
Pareto set [10], as shown in Tables 6 to 9. To understand those
tables, the following notation is used:

∈Yapr  average number of solutions that are in Yapr;

Yapr   average number of solutions that are dominated by Yapr;
|Yalg|  average number of solutions found by each algorithm;
%Yapr  percentage of solutions found by a given algorithm, i.e.

100. (∈Yapr) / (|Yapr|).

10.1 Results obtained for Multicast Group 1
Tables 6 and 7 present experimental results obtained for the
small-multicast group 1 (see Table 5) after a run of 160 seconds
and 320 seconds respectively. Both Tables show that MOACS
and M-MMAS found a lot more solutions than MMA.
Considering only both ACOs, MOACS found more solutions
∈Yapr, giving a better approximation to the Pareto front.

Table 6: Small Multicast Group 1 – Run time = 160 seconds

Comparison of Solutions with Yapr
Covering among

Algorithms
∈Yapr Yapr |Yalg| %Yapr YMOACS YMMMAS YMMA

YMOACS 29 1 30 97%  2.5 1
YMMMAS 3.8 8.6 12.4 13% 0  1
YMMA 3.4 2.6 6 11% 1  1

Table 7: Small Multicast Group 1 – Run time = 320 seconds

Comparison of Solutions with Yapr
Covering among

Algorithms
∈Yapr Yapr |Yalg| %Yapr YMOACS YMMMAS YMMA

YMOACS 29 1 30 97%  2  2
YMMMAS 7 8.6 15.6 23% 0  1
YMMA 4.4 3 7.4 15% 1  2

10.2 Results obtained for Multicast Group 2
Tables 8 and 9 present experimental results obtained for (a large)
multicast Group 2 after a run of 160 seconds and 320 seconds
respectively. Both tables show that MOACS found more solutions
than M-MMAS and MMA. However, when coverage is
considered MMA dominates more solutions of MOACS and it
dominates more solutions of M-MMAS, proving its ability to find
very good solutions even though, it did not find a large number of
solutions. Once more, MOACS found the best approximation to
the Pareto front Yapr.

Table 8: Large Multicast Group 2 – Run time = 160 seconds

Comparison of Solutions with Yapr
Covering among

Algorithms
∈Yapr Yapr |Yalg| %Yapr YMOACS YMMMAS YMMA

YMOACS 16 17.6 33.6 29%  3 1.5
YMMMAS 4.4 8.6 13 37% 2  2
YMMA 6.2 4.8 11 8% 4.2 2

Table 9: Large Multicast Group 2 – Run time = 320 seconds

Comparison of Solutions with Yapr
Covering among

Algorithms
∈Yapr Yapr |Yalg| %Yapr YMOACS YMMMAS YMMA

YMOACS 22 14.4 36.4 39%  2  2
YMMMAS 6.6 11.2 17.8 12% 0  1
YMMA 2.2 1.2 3.4 4% 4.2 1

10.3 General Average
Table 10 presents general averages of the comparison metrics
already defined, considering all performed experiments. It can be
noticed that, on average, MOACS is superior to M-MMAS and
MMA. In fact, MOACS found in average 65.5% of Yapr solutions,
while M-MMAS and MMA just found 13.5% and 10.3%



respectively. Also considering Coverage, MOACS looks better
given that it dominates more solutions calculated by M-MMAS
and MMA. Finally, it should be mentioned that MMA presented a
slightly better performance than M-MMAS given that it
dominates more solutions of M-MMAS.

Table 10: General averages of comparison figures of merit

Comparison of Solutions with Yapr
Covering among

Algorithms
∈Yapr Yapr |Yalg| %Yapr YMOACS YMMMAS YMMA

YMOACS 24 8.5 32.5 65.5%  2.3 1.6
YMMMAS 4.7 9.25 13 13.5% 0.5  1.25
YMMA 4.5 2.9 6.9 10.3% 1.5 1.5

11. CONCLUSIONS
This paper introduces a new approach based on MOACS and
MMAS to solve the multicast routing problem. MOACS and
Multiobjective MMAS are able to optimize simultaneously four
objective functions, such as: (1) maximum link utilization, (2)
cost of a routing tree, (3) maximum end-to-end delay and (4)
average delay. These new proposals are able to solve a multicast
routing problem in a truly multiobjective context, considering all
four objectives at the same time, for the first time using an
algorithm based on Ant Colony Optimization. The new
approaches calculate not only one possible solution, but also a
whole set of optimal Pareto solutions in only one run. This last
feature is especially important since the most adequate solution
can be chosen for each particular case without a priori
restrictions that may eliminate good solutions.

To validate the new approaches, MOACS and M-MMAS were
compared to the MMA, a representative algorithm for solving the
considered multicast routing problem in a truly multiobjective
context, for Traffic Engineering. The experimental results
showed that MOACS and M-MMAS are able to find more
solutions than MMA for different running time and various
multicast groups. Furthermore, MOACS solutions covered M-
MMAS and MMA solutions most of the time, i.e. MOACS found
better solutions in average than M-MMAS and MMA. Therefore,
MOACS approach is the one recommended, considering the
presented experimental results.

The main contribution of this paper is the resolution of the
multiobjective multicast routing problem for the first time in the
literature, using an ACO algorithm. With this aim, the MMAS
traditional one-objective algorithm is modified to solve a
multiobjective problem.

As a future work, the authors will perform more tests over other
network topologies and using other multiobjective metrics.
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