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ABSTRACT

Parallel asynchronous implementations of iteradigorithms

in heterogeneous computer environments are becoaniregy

convenient choice for solving large scale systefrejaations;

however, the usefulness of this approach is limitgdhe need
of partitioning a large system of equations in demnal
subproblems. To overcome this difficulty, this papeesents a
heuristic technique of 4 phases. It considers thiative

performance of processors during the partitionimress and
recommends partial overlapping of critical unknowumen

convenient for the resolution process.

In order to demonstrate the advantage of the peapasethod
using partial overlapping, this paper presents ¢hemaatical
analysis of small linear problems and experimemeslults
using the proposed heuristic algorithm to partitgystems of
equations with different dimensions and charadiesis

Keywords: Partition, Decomposition, Iterative Method,
Partial overlapping, Asynchronous Implementations.

1. INTRODUCTION

With the advent of high speed communication teabgiek,
the aggregate CPU power in a LAN can easily extleatof a
supercomputer [1]. Therefore, parallel asynchronous
implementations of iterative algorithms in hetenogeus
computer environments are becoming a very conveclarice
for solving large scale systems of equations, sfigcivhen
considering advantages such as efficient exploitatof
existing computing resources, cost effectivenedsorter
convergence time, and easier implementations [2].
Unfortunately, the usefulness of this approaclinigéd by the
need of partitioning a large system of equationssnmaller
subproblems to be solved by individual processofsao
distributed computing environment. This partitiagirhas
sometimes two conflicting objectives: balanced ingdamong
processors and good convergence of the resultiergtie
implementation.

A good survey of the partitioning problem may berfd in [3],
beginning with the first studies by Carre in the's6(4].
However, only during the 90"s this problem hasegot lot of
attention, being thee-Decomposition[5] the best known
technique, because of its simplicity by ignoring ddta with
values below a givere during the partitioning process.

However, the e-Decompositioris not able to control the size

of each subproblem; therefore, it has load balanpmoblems.

To overcome this difficulty, Vale et al. [6] propmsa heuristic
technique that assures load balancing for parallel
(homogeneous) computers, that was later refine@dmnan et

al. [7,8] to assure a load balancing proportionathte relative
processors performance in a network of heterogeneous
processorsBased on these previous works, the authors propose
to further refine their technique [7,8], using peroverlapping

[9].

This paper is organized as follows. Section 2 priss¢he
Mathematical Background. Section 3 summarizes treeapt
of partial overlapping, while the Heuristic Algdmh is
presented in Section 4. Experimental results aesgmted in
Section 5 and the concluding remarks are left wi&e 6.

2. MATHEMATICAL BACKGROUND

The idea behind the method is to transform a propheith
difficulties to be solved in parallel, in a new §sily
expanded) problem that can be efficiently solveihgisa
heterogeneous distributed computer system. Indhigext, a
system ofn equations withm unknowns is given by:

Y1

Fy)=0, 0™ - O™ y=| :

Ym

The objective of the partitioning method is to fiadlinear
transformatiorP, in such a way that:

X =Py 2)

the original problem (1) is transformed into a neygtem ofn

equationsif= m):

oo™,y 0o (1)

®d(x) =0, ®:0" - O", x=| : |OO" 3
XI"I
that can be efficiently solved with processors using any

known parallel method. To do so, (3) should be ifaned
according to [2]:

®1(x)

AN nj P
d(x) = , @07 - 01, n=Xn (4)

¢p(x) i=1



with

X1
x=| 1 wherex; 00", 0i 0{3,..., p} (5)
Xp
Thus, equation (3) may be rewritten as:
®,(x) =0, 0i O{1...,p} (6)
that may be solved using an iterative method
X « G(X) (")
that can be chosen in such a way that:
Gi(x)
G =| : |, G:0O"-0On (8)
Gp(¥)

In this way, problem (6) can be solved in paralg,assigning
each subproblem to a different processor that esdat
according to:

Xj « Gj(x) ©)

That way, each processbupdates its local variabbe using
the best known value of which was in part received from the
other processors, and communicates its new valtieetothers
(in a synchronous or asynchronous way [10]). Tleeaiive
process continues until the global solution is nedc

The synchronous implementation of (7) for processoay be
written as:

Xi(k+1) « Gj (x(k)) (10)
where, processarrequires the information of the whole vector
x calculated in the previous iteration to beginrtlegt iteration;
therefore, adead timenormally exists between iterations [2].
To overcome thisdead time problem, the following
asynchronous implementation may be used [2]:

X (k+1) =G;(x' (k)), 0iO{L...,p} 1)

where x' (k) represents the value xfavailable in processor
at iterationk; i.e. processaruses the most updated valuexaf
has, at the moment it begins a new iteration, amgid
synchronization time [10].

The implementation of (11) was studied in [2], whehe
following sufficient convergence condition was ded.

THEOREM 1 (Baran et al. [2}] under assumptions of:
uniform bound on delays, uniqueness of solutiort@given
domain) and block-Lipschitz continuity of the opera, the
asynchronous algorithm (1tpnverges to the solution if:
p(H)<1 (12)
whereH is the comparison matrix (given by the block-Lipsr

constants).
+

As a consequence, the spectral radius of the casopamatrix
P(H) may be used to assure that a given algorithm cgese

to the solution; therefore, it will be used to selggood

partitions.
In short, the goal of a partitioning algorithm @sfind P and to
compute the dimensiomsof each subproblem (4).

When considering the already published methods owith
partial overlapping [3-8], P ={p;} is apermutation matrix

[11] with:
n n
n=m,  >p;=1 and X p; =1 (13)
i=1 j=1

i.e.,P is not more than an ordering of the unknowns.

EXAMPLE 1:decompose the following linear system to be
solved using block-Jacobi’s method in a distribuggstem
with two identical processor®{ andP,)

2y +12y, by
0.08y; +y, + 01y | =|by (14)
12y, + 3y3 by

Solution:
2y + 12y, - by
F(y)=|0.08y; +y, + Qly;~ by (15)
12y, + 3y3 — bs

If the decomposition method proposes:
010
P=/0 0 1, ny=2, andn, =1 (16)
100
equation (3) may be rewritten as:
X1 +0.1x; + 0.08%3 — b,
12x, + 3%y + g @an)
12 + 2%+ by

.
Note that the mapping between the variablesand y is

biunique, i.e.x=Py=y= P~1x. Thus, by solving (3), we
solve (1).

An interesting problem arises when a simple redandeof
variables does not allow a good partition becaoseesspecial
variables (known asritical variableg are required in two or
more processors to assure convergence, due to dtieing
links to other variables distributed in differembpessors of the
computing system. To solve this problem, lkeda &a&i[9]
proposed @artial Overlappingmethod that replicatexitical
variablesin two or more processors.

In example 1, the critical variable ig, because it is strongly

coupled with the variablesy; and y;. Then, partial

overlapping may be used, replicating the second equation
(critical equation) in both processors. SB; can solve

equations 1 and 2, while, solves equations 2 and 3. In this
case,m=3, n=4 (h>m), and the suggested decomposition



method would propose:

100
010

P= 0o 1 of ng=2, and n, =2 (19)
0 0 1

Then, the expanded problem to be solve will be:

[ 2%, +12%, — by —‘

D4 (X 0.08x1 + X5 + 0. 1%, —
®(x) = 1(X) _ 1+ X 4= (20)
¢2(X) 0.08)(1 + X3 + 0. 1X4 - bz
12x3 + X4 — bs
In this case:

n n

2P =Nj =21, and 2P =1 (21)

i=1 j=1

whereN, is the number of replications of varialyle

Note that again, giverP, there is one biunique mapping
between x and y, ie. x=Py=y=P"x, where
P* =(P"P)' P is thepseudo-inversef P [11].

Remark 1:the goal of the proposed partitioning technique,
given a system of equatioyy) =0, is to find a mapping

P; so that, withx =Py, we obtain a new system of
equationsb(x) =0 that can be efficiently solved with

possibly heterogeneous processors, using deconguosit
(4). To do so, our technique calculates the valoes
proportionally to the relative performance of the p
processors to be used in the resolution process.

3. PARTIAL OVERLAPPING

As mentioned, there are systems of equations teateay hard
to partition in subproblems becausecoitical equationsthat
are strongly related to many other equations. Huarsd
problems, it is very difficult to decide which pessor should
solve a givercritical equationand sometimes, the best solution
may be to solve it in several processors at theestame, as
shown in the following examples.

Let return to example 1 of the section 2, where:
2y +12y, -y
F(y)=]0.08y; +y, + Qly3 — b, (22)
12y, + 3y3 = bs
can be represented by the following graph:
12 0.1
ONROBNGD
0.08 12
Figure 3.1: Graph of Example 1.

where the nodes represent the unknowns and thes link
represent the coupling value between variablesefgivy the
coefficients of the problem).

The system can be partitioned withdartial Overlappingin
three different ways witim;= 2, n,= 1 [12], that will be called
Decompositions A, B and C respectively.

At the same time, the system can be partitionedguRartial
Overlapping with

n=2, n=2 and P=

O O O
O r +—» O
o O O

1

That way, thecritical unknown y is replicated in both
processor due to its strong links withandys. In other words,
processoP; will solve equations 1 and 2, while procesBer
will solve equations 2 and 3.

In this case, the new system of equation, cad&ganded
system[7], has an expanded dimensior=4, and can be
represented by the following graph:

0.08

Figure 3.2: Graph for the expanded system of exarhpl

Table 3.1 shows the experimental results obtaindtenw
solving example 1 using two identical processors.cAn be
seen, the block-Jacobi iterative algorithm convergely when
Partial Overlappingis implemented.

Decomposition
with without
Partial Overlapping Partial Overlapping
A B c
2.148 | 1.789| 1.039 0.7845
pH)
Iterations Do not converge 29
Time 0 ls.

Table 3.1 Experimental results solving Example 1.

As a conclusion of example 1, it can be statedttiatks to the
Partial Overlappingtechnique, it is possible to solve in parallel
problems that otherwise would not be solvable vgtrallel
implementations.

EXAMPLE 2: decompose the following linear system to be
solved using block-Jacobi’s method, in a distridutgstem
with three identical processom,( P, andPs).



10yq + 2y, + 2ya+ 10y, — by
y1 +10y, + y3+ 10y, — b,
2y; + Yy, +10y3 + 10y, — bs

5y, + 5y, + 5y3 + 100y, — by

F(y) = (23)

Using the decomposition method withdrRartial Overlapping
several decompositions can be found, as an example:

n=2, n=1, n;=1 with a permutation matrix:

O O O
O p» O O
» O O O
o O » O

So, the new system will be:

5Xl + 100X4 + 5)(2 + 5)(3 - b4
- Xl + 1OX4 + 10)(2 + X3 - b2
2%y +10x4 + Xo + 10x3— b3J

[mx1 +10x4+ 260+ 25— by

(24)

The resulting spectral radius of the comparison rimait
P(H)=0.4505< 1, thus, the sufficient convergence

condition given by Theorem 1, is satisfied.

As another partitioning alternative, the method posed in
next section suggests a decomposition witPartial
Overlapping with the replication of the fourth equation
(critical equatior) in the three processors. In this case, there
exists three versions of the same variapldx,, x, and xg);
therefore, the total number of variables increasesthe
expanded system (from=4 to n'’=6), but the presence of the
critical equation4 justifies the use obartial overlapping as
shown below for the case with:

m=2,m=2,n=2 and P =

O O O O O
O Bk O = O

O O O O O B
o O O » O O

Thus, the expanded system will be:

[10%; + 10x, + 2Xg + 2X5— by |
5Xl + 100)(2 + 5)(3 + 5)(5 - b4
Xg +10x3 + 10%4 + X5— b,

= = 25

*() ¢2(X) 5X; + 5%3 + 100x4 + 5x%5— by (25)
2Xp + X3 +10x5 + 10xg — bs

_5)(1 + 5X3 + 5X5 + 100)(6 - b4_

The spectral radius of the comparison matrix, fids system, is
Pp(H')=02105<1, which indicates that the sufficient

convergence condition of Theorem 1 is satisfied.

By comparison of the spectral radius, the followiatation can
be written:

P(H') =0.2105 < p(H) = 04505 < 1
threfore, it may be expected that the iterativeoalgm (with
Partial Overlapping will converge faster.

In fact, when both iterative algorithms were impéerted, we
measured the experimental results shown in taBlevhere it
can be seen that the implementation vidtdrtial Overlapping
converges in fewer iterations and faster, despgegreater
dimension. Note that, if the spectral radius isduas aFigure

of Merit to select the best decomposition, according [7-8]
recommendation, the decomposition wWiRartial Overlapping

is correctly selected as the better one.

Decomposition
with Partial without Partial
Overlapping Overlapping
Spectré radius 0.4505 0.2105
Iterations 14 9
Time 0.435 s 0.3976 s

Table 3.2: Results of solving the Example 2.

4. DECOMPOSITION METHOD

This section presents the proposed decompositiothaue
based on previous works of the authors [7-8], wille
significant improvement of semi-automatic partitiggn with
Partial Overlapping

Given a system ah equations withm unknown to be solved in
a distributed system witp processors, the proposed method
uses a matrid, of dimensiormx m, whose elementsy; (i #j)
represents the degree of dependency (link valueydaesm the
variablesy; andy; respectively.

The variablesy, andy; are not adjacent if m; = ny =0;
otherwisey; andy; are adjacent. In case they are adjacent, they
are calledveakly coupledf m; andm; are small, andtrongly
coupledif m; and/orm; are large (with respect to other values

of Myp).

The main idea behind the method is to partition ndain
problem in subproblems that agglomerate togeth&nawns
that are strongly coupled, while letting weakly plad
variables to be calculated in different processdle size of
each subproblem should be (as much as possibléjréat
relation with theRelative Performancef the processor of the
heterogeneous distributed computing system wheietit be
solved.

Basically, the method can be understood as thedfiiom of p



sub-systems, beginning with initial variables, calledseeds
The decomposition of the system is accomplisheddsygning
variables to the different partitions (seedy trying always to
maintain the number of assigned variables propuatido the

relative performancew OOP of the processors. As a result of

the decomposition process, the method givegp#renutation
matrix P and the subproblem dimensiamgsee Remark 1).

The method consists of four phases representaguiref4.1.

Phase 1: Phase 2: Phase 3: L Phase 4:
Variable > Seed [—| Partitioning Partitioning
Classification Selection| Process. Evaluation.

Figure 4.1: Phases of the proposed decompositithatie

PHASE 1: Variable Classification (Algorithm 4.1).

a ranking table is built based on a predefined hteig

proportional to the level of coupling among varehl The

weight may be defined in several ways [6-8]. Foe th

experimental results of next section, the followingights
(calledPesg), were used:

m
Peso; = > (m;)™ . with:
=1, j#i

m;l :Sup{ ‘m” , m“‘ } ; and Zij :m;J /DZO,

whereD is the mean of all values afy; # 0.

Algorithm 4.1: Variable Classification.

Input: matrixM

FROM i=1TO m [* for each of then variables. *
Calculate the weigtResg;
IncludePesgin the ordered ranking of variables;
Calculate the weight averagen
Calculate the weight standard deviatloe

Output: Weights Pesg of the m variables ordered in |a
ranking, Pm (weight average) ande (weight standar
deviation)

PHASE 2: Seed Selection (Algorithm 4.2).

Each of thep processors selects one variable as its seed
Normally, a seed is a variable with a high weidtattis not too
close to other seeds, behaving as an agglomereéioter of
unknowns. The user has the choice of forcing onenore
variables to be used as seeds. In general, sesetsl of
different seeds may be obtained at the end ofthése.

Algorithm 4.2: Seeds Selection.

Input: matrix M, weightsPes@, number of processofs and
predefined parameterslim, ngrup, nveq.

vlim is the minimum weight required to consider a Valaaas
a candidate to be a seed;

ngrup is the number of variables to be grouped arournth ¢a
seed candidate to check if it is a center of agglated
unknowns; and

nvec is a parameter used to avoid two strongly coupled
variables being seed at the same time.

Initialize setk as empty;
/* K, set of possible seed candidates */
FOR eachvariabley;
IF (Pes@=vlim) THEN
Include variablg; in setK ;
FOR each variablg; in K
Initialize the set; as empty;
/* 1, set of variables grouped around each seed candidate
Include variabley, in |;;
Initialize the seCIA; as empty;
/* CIA, set of adjacent variables of $gV/
Include inCI A, the adjacent variables of varialyle
FROM 1TO ngrup
[* ngrupvariables are grouped around each candidate /
Include variable with highest weight 6fA; into|; ;
Eliminate this variable frorcl A;;
Include inCl A; new adjacent variables of moved varialjle
FOR each sel,;
Calculate the weighted sum of all the variablek in
Initialize the seB;
/* S, set of chosen seeds to begin a partitiop */
Select inK variabley; with the largest sum of weightslip;
Includeyy in S as first seed ;
Eliminatey, fromK ;
WHILE (number of seeds )
Select inK variableys with the largest sum of weights lig
IF (ys is not between thavecfirst variables from selt of
previous selected seed®HEN
Selecty; as seed ;
Includeysin S;
Eliminateys fromK;
ELSE
Eliminateys fromK;

Output: For each set of parameters, there will be on& sét
p seeds

Phase 3:Partitioning Process (Algorithm 4.3).

The decomposition of the system is accomplisheddsjgning
variables to different partitions (mseed¥ according to the
relative performancey; of each processdr In this way, the
load balance is maintained between desired lev@isod
convergence properties are obtained when varialles
assigned to partitions to which they have theorggest link. In
case a variable is strongly coupled to severalitjwears, the



need of Partial Overlapping is analyzed and eventually
recommended by the method. The user has the chafice
selecting a partition with or without partial owegping for
“critical variables” Eventually, the user may choose both
partitions; therefore, several partitions may btated.

Algorithm 4.3: Partitioning Process.

Input:  set of seed$ = {s,,...,$}, matrix M, weightsPesg
and a , where a is the minimal difference between two links
to consider them as not equally strong.

CalculateLimOver,

Initialize the vector<C ONP andQ ONP;
[* C andQ are vectors used to control load balancing */
/* ¢ is the size of sub-probleimandq; = c;/w; */
FOR each seed OS
[* J, set of variables assigned to a given subproblgm *
Initialize setJ; as empty;
Include inJ; the seed ;
Initialize setClIA; as empty;
/* CIA, set of adjacent variables to set/
Include inCI A; the adjacent variables to the seed
Update the vector€ andQ ;
WHILE there exist variables no grouped
FOR all the setg); that need to annex variables
Select heaviest variable €I A as candidate to be include|
Control if there exist coincidences of candidates;
IF there exist coincidences of candidafgsTHEN
Sort the link values between variableslaind y, ;
IF (there is no overlapping optio®R the differencs
between the greatest link value and the following @s
not greater thamr ) THEN
Include the candidate variablg, in the corresponding
J; with the mayor coupling;
ELSE there exists a coincidence
/* overlapping may be useful [*/
IF weight of variabley, > LimOver THEN
/* make overlapping */
Form the setCoincidenceCo with all the variableg
most strongly coupled tg, ;
Include y, in all thecoincidentsubsets);
ELSE
Include y, in the firstJd that fights fory, ;
ELSE
Include y, in the firstJ;
Eliminate y, from all theCIAs inJ ;
Include in the correspondingl As the adjacent variables| to
the recently included variable;
ActualizeC andQ;
n =G,
[* n; is the dimension of subproblem assigned to procéss

Output: partition inp subproblems (equivalent to matrix|P)
and dimensiong; of each subsystem.

Phase 4:Partitioning Evaluation (Algorithm 4.3).

All the decompositions generated by the proposethodeand
other decompositions eventually recommended by user,
should be compared to chose the more promisingForethat
task, several criterions may be used, but we fgurg] that the
best one is to compare the spectral radius of dmeparison
matrix [2]. That way, the different decompositiom® ranked
and the user can choose the best one(s).

Algorithm 4.4: Partitioning Evaluation.

Input: all the partitions generated by algorithm 4.3 amwy|
other partition introduced by the user.

FOR each partition
Calculate p(H) ;

Include the value ofp(H) in a ranking;
Select as best partition the one with smaj) ;
Write explicitly permutation matrif of the selected partition;

Output: ranking of partitions, with explicit values Bfandn;
for the recommended decomposition.

5. EXPERIMENTAL RESULTS

The advantages of solving large systems using dgdeeous
distributed computing system are well establishad thie
literature [1-3]. Experimental results using diffat
partitioning methods (without overlapping), haveeatly been
presented [6-8]. Therefore, this section preserpermental
results with partial overlapping using a distritiisomputing
environment with three personal computgrs ) with similar
performance (v = [1,1,1] ). Let consider the linear system of
13 equations and 13 unknowrsx = b, with:

410 2 2 10 1 0 0 O O O 3 3 3
1101 10 3 3 3 0 0 0O O O O
2 110 10 0 0 0 3 3 3 0 0 O
5 5 51000 0 0 0 0 0 0 0 O
13 0 0 10 0 0 0 0O O1 0 O
0 3.0 0 0 10 3 0 O O0O5 0 0 O

A=f0 3 0 0 O 3 10 0 0 0O O O O
0 0 30 0 0O O 100 3 0O 00050
0 0 30 0 0 O 3 10 3 0O O O
0 0 3 0 0050 0 3 10 0 0 O
3 0 0 01 OO O O 0110 0 O
3 0 0 0O 0O O OO50 O 0 10 3
/13 0 0 0 0 0 0 0 0 0 0 3 10

By using de decomposition method of section 4 Withks A,
two different partitions are chosen [12]:

4 one without overlapping, withyrF 4, =5 and B =4;



4 and another with partial overlapping that replisatgn the
three processors, and dimensiopsm, = ng = 5.

Experimental results, solving the above system hithck-
Jacobi's method, are presented in Table 5.1. Themn be
seen that the proposed decomposition method firulrtition
with overlapping that solves the problem in fewrations,
and consequently, in less time than the one without
overlapping. Note that the decomposition methodgmted in
section 4 would choose in Phase 4 the partitionh wit
overlapping as the recommended one, because & bamller

p(H).

Similar results are reported in [12] where therarisexample
in which no partition without overlapping solvesld X 13
linear system of equations, while the decompositi@thod of
section 4 finds a partition with overlapping thande solved
in parallel without difficulties.

Decomposition
without Overlapping:  with Overlapping

|_Dimension| m=13 \_...n=15

e 08172 . 0.3780

|_lterations | 18 . 9
Time 0.6179 s ! 0.3676 s

Table 5.1Experimental results solving the 13 X 13 system.

Another (sparse) linear system of 100 equation$ viif0
unknowns is presented in [12] and solved with tlaenes
computing resources, with the results presented@ainle 5.2.
Again, the proposed decomposition method is ablénib a
partition with partial overlapping that can be savin fewer
iterations than the one without partial overlappi@®gmce more,
the solution with partial overlapping is faster.

Decomposition
without Overlapping !  with Overlapping

|_Dimension| ~~ m=100 L n=102
| lterations | 21 Lo 12
Time 0.78939 s | 0.45108 s

Table 5.2Experimental results solving a 100 X 100 system.

In short, the systems of equations presented ad@veseful to
probe that partial overlapping may be used not avitly small
problems, as the one presented in section 3, bilx harger
ones. Moreover, the examples are interesting tavshat the
decomposition method presented in section 4 is dble
recommend good partitions using partial overlapping
However, if partial overlapping is that useful,

why most professionals do not use it?.

To have a better insight of the way the decompmsithethod
works and to try to find an answer of the abovestjor, a
number of randomly generated linear systems of teansof
dimension 100, with different percentage C of zgi©s 0%,
30%, 50%, 70%, and 90%, to experiment with sparse

matrices), were solved with different number ofqassorsi{ =

2,3,4,5, ..). Each 100X100 randomly generatethlpm was
partitioned using the decomposition method of sec#, for
different values of the parametaxsandLimOverused by the
method of section.4

After studying 100 randomly generated problemsefach set
of parameters [Cp, a, LimOvel, we got to the results and
recommendations that follows.

¢ The number of overlapped unknowns increases with
LimOver, as expected. It was found experimentally that a
gooda-priori choice may be:
LimOver=Pm+ 2De;
that way, only highly coupled variables can be tapmred.

¢ The parameten, used to decide if two links are equally
strong, is not very important for the decompositioethod.
In fact, if it is reasonable in a wide range (194696 of the
m; values), the same decomposition is recommended by
the method. As expected, the number of recommended
overlapping may increase slightly with

¢ The percentage C of zeros does not change sigmtifjcdie
possibility of using partial overlapping. Howevétr,was
noted that the number of overlapped variables
recommended by the decomposition method may dexreas
for extreme values of C (too large or too small).

¢ In general, there is a very small number of prolslidor
which partial overlapping is recommended. According
our experiments, no more than 3% of the problents ca
benefit from using partial overlapping. This resséems
the main reason why people do not bother to usgapar
overlapping, unless it is too obvious to use a dgmsition
technique.

¢ It was noted that the number of overlapped varmble
increases with the number of processors; therefmasial
overlapping may become more important when we dry t
solve very large problems with a large number of
processors.

In conclusion, partial overlapping has been rarebed in
practical problems because it is very difficultfiod a-priori
good partitions with partial overlapping and an axted
method to find a good partition is out of posstleb becuase
the space of possible partitions is combinatoffal. make it
worth for practical applications, only a very smpdircentage
of problems can benefit from the partial overlagpiachnique
when solved in parallel. In consequence, the partia
overlapping technique was not thoroughly studieehethough

it is known for more than a decade [9]. This situraimay now
change with the proposed decomposition techniquat th
automatically recognizes situations for which tise of partial
overlapping technique may be very useful and recenuwn
good partitions that can benefit from this techeiqu



6. CONCLUSIONS

In view of the advent of parallel and distributedmputer
systems, as the existing networks, several decadtigos
methods have been published with the idea of sglainarge
problem using the existing computing resources. &l@s,
most of the published techniques do not have thktyabf

controlling the size of each subproblem in suchag that load
balancing between heterogeneous processors can
accomplished.

To overcome this problem, the authors proposed eamigtic
technique, consisting of 4 sequential phases hasithe ability
of decomposing a problem in a given number of soipms,
with a load balance proportional to the relativef@enance of
the processors to be used in the resolution. Ih phase of the
proposed method, an expert user can interact Wwehntethod
by suggesting different parameters, the interestoimsidering
partial overlapping, or even partitions that magkia@ooda-
priri. Phase 4 of the method makes a ranking of theerbett
partitions, based on a parameters that can assarermgence
of an iterative implementation, even in an asynobts
environment.

A very unique feature of the proposed method islitsity to
recommend partial overlapping in situations whereay be
very useful. In fact, in section 3 it was preseneg@dmples
where a problem can be better solved in paralleerwpartial
overlapping technique is used. Other examples \dtiyer
systems of equations (13X13 and 100X100) whereepted in
section 5, showing that partial overlapping maywagy useful
when we have the ability of finding when and howused it.

To understand why most professionals do not usdiapar
overlapping, a number of randomly generated systefs
equations were studied, concluding that only imalsamount
of problems (less than 3%) can benefit from thishtéque.
Therefore, it was not worth finding good partitiomih partial
overlapping, specially because there was no puddishethod
to do it automatically.

This problem may be now overcame with the presemietthod
that is able to recommend good partitions with iphrt
overlapping, that may have the additional benefitusing
Asynchronous Team Algorithr{] to solve each version of a
critical variable with a different algorithm.

As a consequence, the interest in partial overf@ppgnay
increase and more professionals may benefit frons th
technique when solving large problems using hetregus
distributed computing facilities, as the existingnmputer
networks which increase their aggregate CPU powtr an
impressive speed.
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