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ABSTRACT 
 
Parallel asynchronous implementations of iterative algorithms 
in heterogeneous computer environments are becoming a very 
convenient choice for solving large scale systems of equations; 
however, the usefulness of this approach is limited by the need 
of partitioning a large system of equations in smaller 
subproblems. To overcome this difficulty, this paper presents a 
heuristic technique of 4 phases. It considers the relative 
performance of processors during the partitioning process and 
recommends partial overlapping of critical unknown when 
convenient for the resolution process. 
 
In order to demonstrate the advantage of the proposed method 
using partial overlapping, this paper presents a mathematical 
analysis of small linear problems and experimental results 
using the proposed heuristic algorithm to partition systems of 
equations with different dimensions and characteristics. 
 
Keywords: Partition, Decomposition, Iterative Method, 
Partial overlapping, Asynchronous Implementations. 
 
 
 

1. INTRODUCTION 
 
With the advent of high speed communication technologies, 
the aggregate CPU power in a LAN can easily exceed that of a 
supercomputer [1]. Therefore, parallel asynchronous 
implementations of iterative algorithms in heterogeneous 
computer environments are becoming a very convenient choice 
for solving large scale systems of equations, specially when 
considering advantages such as efficient exploitation of 
existing computing resources, cost effectiveness, shorter 
convergence time, and easier implementations [2]. 
Unfortunately, the usefulness of this approach is limited by the 
need of partitioning a large system of equations in smaller 
subproblems to be solved by individual processors of a 
distributed computing environment. This partitioning has 
sometimes two conflicting objectives: balanced loading among 
processors and good convergence of the resulting iterative 
implementation. 
A good survey of the partitioning problem may be found in [3], 
beginning with the first studies by Carre in the 60’s [4]. 
However, only during the 90´s this problem has gotten a lot of 
attention, being the ε-Decomposition [5] the best known 
technique, because of its simplicity by ignoring all data with 
values below a given ε during the partitioning process. 

However, the  ε-Decomposition is not able to control the size 
of each subproblem; therefore, it has load balancing problems. 
To overcome this difficulty, Vale et al. [6] proposed a heuristic 
technique that assures load balancing for parallel 
(homogeneous) computers, that was later refined by Barán et 
al. [7,8] to assure a load balancing proportional to the relative 
processors performance w in a network of heterogeneous 
processors. Based on these previous works, the authors propose 
to further refine their technique [7,8], using partial overlapping 
[9]. 
 
This paper is organized as follows. Section 2 presents the 
Mathematical Background. Section 3 summarizes the concept 
of partial overlapping, while the Heuristic Algorithm is 
presented in Section 4. Experimental results are presented in 
Section 5 and the concluding remarks are left to Section 6. 
 
 

2. MATHEMATICAL BACKGROUND 
 
The idea behind the method is to transform a problem, with 
difficulties to be solved in parallel, in a new (possibly 
expanded) problem that can be efficiently solved using a 
heterogeneous distributed computer system. In this context, a 
system of m equations with m unknowns is given by: 
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The objective of the partitioning method is to find a linear 
transformation P, in such a way that:

 
x Py=       (2) 

the original problem (1) is transformed into a new system of n 
equations (n≥  m): 

ΦΦΦΦ ΦΦΦΦ( ) , : ,x x= ℜ → ℜ =
�

�

�
�
�

�

�

�
�
�

∈ℜ0
1

  n n

n

n
x

x

�    (3) 

that can be efficiently solved with p processors using any 
known parallel method. To do so, (3) should be partitioned 
according to [2]: 
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Thus, equation (3) may be rewritten as: 
ΦΦΦΦ i i p( ) , { ,..., }x = ∀ ∈0 1      (6) 

that may be solved using an iterative method 
x G x← ( )       (7) 

that can be chosen in such a way that: 
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In this way, problem (6) can be solved in parallel, by assigning 
each subproblem to a different processor that updates xi 
according to: 

x G xi i← ( )       (9) 

 
That way, each processor i updates its local variable xi using 
the best known value of x, which was in part received from the 
other processors, and communicates its new value to the others 
(in a synchronous or asynchronous way [10]). The iterative 
process continues until the global solution is reached. 
 
The synchronous implementation of (7) for processor i may be 
written as: 

x G xi ik k( ) ( ( ))+ ←1      (10) 

where, processor i requires the information of the whole vector 
x calculated in the previous iteration to begin the next iteration; 
therefore, a dead time normally exists between iterations [2]. 
To overcome this dead time problem, the following 
asynchronous implementation may be used [2]: 

},...,{)),(x(G)(x pikk i
ii 1    1 ∈∀=+      (11) 

where x i k( )  represents the value of x, available in processor i 
at iteration k; i.e. processor i uses the most updated value of x it 
has, at the moment it begins a new iteration, avoiding 
synchronization time [10]. 
 
The implementation of (11) was studied in [2], where the 
following sufficient convergence condition was derived. 
 
THEOREM 1 (Barán et al. [2]): under assumptions of: 
uniform bound on delays, uniqueness of solution (in the given 
domain) and block-Lipschitz continuity of the operators, the 
asynchronous algorithm (11) converges to the solution if: 

ρρρρ( )H < 1      (12) 

where H is the comparison matrix (given by the block-Lipschitz 
constants).  

� 
 
As a consequence, the spectral radius of the comparison matrix 
ρρρρ( )H  may be used to assure that a given algorithm converges 

to the solution; therefore, it will be used to select good 

partitions. 
In short, the goal of a partitioning algorithm is to find P and to 
compute the dimensions ni of each subproblem (4). 
 
When considering the already published methods without 
partial overlapping  [3-8], P = { }pij is a permutation matrix  

[11] with:  
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i.e., P is not more than an ordering of the unknowns. 
 
 

EXAMPLE 1: decompose the following linear system to be 
solved using block-Jacobi’s method in a distributed system 
with two identical processors (P1 and P2) 
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Solution: 

F y( ) . .=
+ −

+ + −
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If the decomposition method proposes: 
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equation (3) may be rewritten as: 
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� 
Note that the mapping between the variables x and y is 

biunique, i.e. x P y y P x= � = − 1 . Thus, by solving (3), we 
solve (1). 
 
An interesting problem arises when a simple reordering of 
variables does not allow a good partition because some special 
variables (known as critical variables) are required in two or 
more processors to assure convergence, due to their strong 
links to other variables distributed in different processors of the 
computing system. To solve this problem, Ikeda & Šiljak [9] 
proposed a Partial Overlapping method that replicates critical 
variables in two or more processors.  
 
In example 1, the critical variable is y2  because it is strongly 

coupled with the variables y1  and y3 . Then, partial 

overlapping may be used, replicating the second equation 
(critical equation) in both processors. So, P1 can solve 
equations 1 and 2, while P2 solves equations 2 and 3. In this 
case, m=3,  n=4 (n>m), and the suggested decomposition 



method would propose: 
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Then, the expanded problem to be solve will be: 
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In this case: 
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where Nj is the number of replications of variable yj. 
 
Note that again, given P, there is one biunique mapping 

between x and y, i.e. x P y y P x= � = + , where 

P P P P+ −= ( )T T1  is the pseudo-inverse of P [11]. 
 

Remark 1:  the goal of the proposed partitioning technique, 
given a system of equations F y( ) = 0 , is to find a mapping 
P; so that, with x P y=  , we obtain a new system of 

equationsΦΦΦΦ( )x = 0  that can be efficiently solved with p 
possibly heterogeneous processors, using decomposition 
(4). To do so, our technique calculates the values ni 
proportionally to the relative performance w of the p 
processors to be used in the resolution process. 

 
 

3. PARTIAL OVERLAPPING 
 
As mentioned, there are systems of equations that are very hard 
to partition in subproblems because of critical equations that 
are strongly related to many other equations. For those 
problems, it is very difficult to decide which processor should 
solve a given critical equation and sometimes, the best solution 
may be to solve it in several processors at the same time, as 
shown in the following examples.  
 
Let return to example 1 of the section 2, where: 
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can be represented by the following graph: 
 
 
 
 
 
 
 

where the nodes represent the unknowns and the links 
represent the coupling value between variables (given by the 
coefficients of the problem).  
 
The system can be partitioned without Partial Overlapping in 
three different ways with n1= 2, n2= 1 [12], that will be called 
Decompositions A, B and C respectively.  
 
At the same time, the system can be partitioned using Partial 
Overlapping, with  

n1= 2,   n2= 2   and   P =
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That way, the critical unknown y2  is replicated in both 
processor due to its strong links with y1 and y3. In other words, 
processor P1 will solve equations 1 and 2, while  processor P2 
will solve equations 2 and 3. 
 
In this case, the new system of equation, called expanded 
system [7], has an expanded dimension n’=4, and can be 
represented by the following graph: 
 
 
 
 
 
 
 
 
 
 
Table 3.1 shows the experimental results obtained when 
solving example 1 using two identical processors. As can be 
seen, the block-Jacobi iterative algorithm converges only when 
Partial Overlapping is implemented. 
 

 Decomposition  

 with  
Partial Overlapping 

without 
Partial Overlapping 

 A B C  

ρ (H) 2.148 1.789 1.039 0.7845 

Iterations Do not converge 29 
Time ∞ 

1 s. 

 
 
 
As a conclusion of example 1, it can be stated that thanks to the 
Partial Overlapping technique, it is possible to solve in parallel 
problems that otherwise would not be solvable with parallel 
implementations. 
 
 

EXAMPLE 2: decompose the following linear system to be 
solved using block-Jacobi’s method, in a distributed system 
with three identical processors (P1, P2 and P3). 
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Figure 3.1: Graph of Example 1. 
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Figure 3.2: Graph for the expanded system of example 1. 
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Table 3.1: Experimental results solving Example 1. 
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Using the decomposition method without Partial Overlapping, 
several decompositions can be found, as an example: 
 
        n1= 2,   n2= 1,   n3= 1   with a permutation matrix: 
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So, the new system will be: 
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The resulting spectral radius of the comparison matrix is 
ρρρρ( ) .H = <0 4505 1; thus, the sufficient convergence 

condition given by Theorem 1, is satisfied. 
 
As another partitioning alternative, the method proposed in 
next section suggests a decomposition with Partial 
Overlapping, with the replication of the fourth equation 
(critical equation) in the three processors. In this case, there 
exists three versions of the same variable y4 (x2, x4 and x6); 
therefore, the total number of variables increases in the 
expanded system (from n=4 to n’= 6), but the presence of the 
critical equation 4 justifies the use of partial overlapping, as 
shown below for the case with: 
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Thus, the expanded system will be: 
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The spectral radius of the comparison matrix, for this system, is 
ρρρρ( ' ) .H = <0 2105 1 , which indicates that the sufficient 

convergence condition of Theorem 1 is satisfied. 
 
By comparison of the spectral radius, the following relation can 
be written: 

ρρρρ ρρρρ( ' ) . ( ) .H H= < = <0 2105 0 4505 1  

threfore, it may be expected that the iterative algorithm (with 
Partial Overlapping) will  converge faster. 
 
In fact, when both iterative algorithms were implemented, we 
measured the experimental results shown in table 3.2, where it 
can be seen that the implementation with Partial Overlapping 
converges in fewer iterations and faster, despite its greater 
dimension. Note that, if the spectral radius is used as a Figure 
of Merit to select the best decomposition, according [7-8] 
recommendation, the decomposition with Partial Overlapping 
is correctly selected as the better one. 
 

 Decomposition  

 with Partial 
Overlapping 

without Partial 
Overlapping 

Spectral radius 0.4505 0.2105 

Iterations 14 9 
Time 0.435 s 0.3976 s 

 
 
 

4. DECOMPOSITION METHOD 
 
This section presents the proposed decomposition method, 
based on previous works of the authors [7-8], with the 
significant improvement of semi-automatic partitioning with 
Partial Overlapping. 
 
Given a system of m equations with m unknown to be solved in 
a distributed system with p processors, the proposed method 
uses a matrix M,  of dimension m x m, whose elements mij  (i ≠ j) 
represents the degree of dependency (link value) between the 
variables yj  and yj respectively. 
 
The variables yi and yj are not adjacent if  mij = mji =0; 
otherwise, yi and yj are adjacent. In case they are adjacent, they 
are called weakly coupled if mij and mji are small, and strongly 
coupled if mij and/or mji are large (with respect to other values 
of mkl).  
 
The main idea behind the method is to partition de main 
problem in subproblems that agglomerate together unknowns 
that are strongly coupled, while letting weakly coupled 
variables to be calculated in different processors. The size of 
each subproblem should be (as much as possible) in direct 
relation with the Relative Performance of the processor of the 
heterogeneous distributed computing system where it is to be 
solved. 
 
Basically, the method can be understood as the formation of p 

Table 3.2: Results of solving the Example 2. 



Algorithm 4.1:  Variable Classification. 

Algorithm 4.2: Seeds Selection. sub-systems, beginning with p initial variables, called seeds. 
The decomposition of the system is accomplished by assigning 
variables to the different partitions (or seeds), trying always to 
maintain the number of assigned variables proportional to the 

relative performance w ∈ℜp  of the processors. As a result of 
the decomposition process, the method gives the permutation 
matrix P  and the subproblem dimensions ni (see Remark 1).  
 
The method consists of four phases represented in figure 4.1. 
 
 
 
 
 
 
 
 
 
 
PHASE 1: Variable Classification (Algorithm 4.1). 
a ranking table is built based on a predefined weight 
proportional to the level of coupling among variables. The 
weight may be defined in several ways [6-8]. For the 
experimental results of next section, the following weights 
(called Pesoi), were used: 
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where D is the mean of all values of  mij ≠ 0. 
 
 
 
 
 
Input : matrix M 
 
FROM  i = 1 TO m     /* for each of the m variables. */ 
 Calculate the weight Pesoi ; 
 Include Pesoi in the ordered ranking of variables; 

Calculate the weight average Pm; 
Calculate the weight standard deviation De; 
 
Output : Weights Pesoi of the m variables ordered in a 
ranking, Pm (weight average) and De (weight standard 
deviation). 
 
 
 
PHASE 2: Seed Selection (Algorithm 4.2). 
Each of the p processors selects one variable as its own seed. 
Normally, a seed is a variable with a high weight that is not too 
close to other seeds, behaving as an agglomeration center of 
unknowns. The user has the choice of forcing one or more 
variables to be used as seeds. In general, several sets of 
different seeds may be obtained at the end of this phase. 
 

 
 
 
Input : matrix M , weights Pesoi , number of processors p, and 
predefined parameters (vlim, ngrup, nvec).  
vlim is the minimum weight required to consider a variable as 
a candidate to be a seed;  
ngrup is the number of variables to be grouped around each 
seed candidate to check if it is a center of agglomerated 
unknowns; and 
nvec is a parameter used to avoid two strongly coupled 
variables being seed at the same time. 
 
Initialize set K as empty;  

/* K, set of possible seed candidates */ 
FOR each variable yi 
 IF  (Pesoi ≥ vlim) THEN  
  Include variable yi  in set K ; 

FOR each variable yi  in K 
 Initialize the set Ii as empty;  

/* I, set of variables grouped around each seed candidate */ 
 Include variable yi  in Ii ; 
 Initialize the set CIAi  as empty;  

/* CIA, set of adjacent variables of set Ii */ 
 Include in CIAi the adjacent variables of variable yi ; 
 FROM  1 TO ngrup  

/* ngrup variables are grouped around each candidate / 
Include variable with highest weight of CIAi into Ii ; 
Eliminate this variable from CIAi; 
Include in CIAi new adjacent variables of moved variable; 

FOR each set Ii 
Calculate the weighted sum of all the variables in Ii ; 

Initialize the set S;  
/* S, set of chosen seeds to begin a partition */ 

Select in K variable yk with the largest sum of weights in Ik ; 
Include yk in S as first seed ; 
Eliminate yk from K ; 
WHILE  (number of seeds < p) 

Select in K variable ys with the largest sum of weights in Is; 
IF  (ys is not between the nvec first variables from set I of 
previous selected seeds) THEN  
Select ys as seed ; 
Include ys in S; 
Eliminate ys  from K; 

ELSE 
Eliminate ys  from K ; 

 
Output : For each set of parameters, there will be one set S of 
p seeds  
 
 
Phase 3: Partitioning Process (Algorithm 4.3). 
The decomposition of the system is accomplished by assigning 
variables to different partitions (or seeds) according to the 
relative performance wi of each processor i. In this way, the 
load balance is maintained between desired levels. Good 
convergence properties are obtained when variables are 
assigned to partitions to which they have their strongest link. In 
case a variable is strongly coupled to several partitions, the 

Figure 4.1: Phases of the proposed decomposition method. 
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Algorithm 4.3:  Partitioning Process. 

Algorithm 4.4: Partitioning Evaluation. 

need of Partial Overlapping is analyzed and eventually 
recommended by the method. The user has the choice of 
selecting a partition with or without partial overlapping for 
“critical variables”  Eventually, the user may choose both 
partitions; therefore, several partitions may be obtained. 
 
 
 
 
Input: set of seeds S = {s1,...,sp}, matrix M , weights Pesoi 
and α , where α is the minimal difference between two links 
to consider them as not equally strong. 
 
Calculate LimOver;  

Initialize the vectors C ∈N p  and Q ∈N p ; 
/* C and Q are vectors used to control load balancing */ 

/* ci is the size of sub-problem i and qi = ci/wi */ 
FOR each seed si ∈S 

/* J, set of variables assigned to a given subproblem */ 
Initialize set Ji as empty; 
Include in Ji the seed si ; 
Initialize set CIAi as empty; 

/* CIA, set of adjacent variables to set Ii */ 
Include in CIAi the adjacent variables to the seed si ; 

Update the vectors C and Q ;  
WHILE  there exist variables no grouped 
FOR all the sets Ji  that need to annex variables 
Select heaviest variable in CIA as candidate to be include; 
Control if there exist coincidences of candidates; 
IF  there exist coincidences of candidates �yk  THEN  

Sort the link values between variables of J and �yk ; 
IF  (there is no overlapping option OR the difference 
between the greatest link value and the following one is 
not greater than α ) THEN 
Include the candidate variable �yk  in the corresponding 
Ji with the mayor coupling; 

ELSE there exists a coincidence  
/* overlapping may be useful */ 

IF  weight of variable �yk  ≥  LimOver  THEN  
/* make overlapping */ 

Form the set Coincidence Co with all the variables 
most strongly coupled to �yk ; 

Include �yk  in all the coincident subsets J; 
ELSE  
Include �yk  in the first J that fights for �yk ; 

ELSE 
Include �yk  in the first J ; 

Eliminate �yk from all the CIAs in J ; 
Include in the corresponding CIAs the adjacent variables to 
the recently included variable; 
Actualize C and Q; 

ni = ci; 
/* ni is the dimension of subproblem assigned to processor i*/ 

 
Output : partition in p subproblems (equivalent to matrix P) 
and dimensions ni of each subsystem. 
 

Phase 4: Partitioning Evaluation (Algorithm 4.3).  
All the decompositions generated by the proposed method and 
other decompositions eventually recommended by the user, 
should be compared to chose the more promising one. For that 
task, several criterions may be used, but we found [7-8] that the 
best one is to compare the spectral radius of the comparison 
matrix [2]. That way, the different decompositions are ranked 
and the user can choose the best one(s). 
 
 
 
Input : all the partitions generated by algorithm 4.3 or any 
other partition introduced by the user. 
 
FOR each partition 
Calculate ρ( )H  ; 
Include the value of ρ( )H  in a ranking; 

Select as best partition the one with smaller ρ( )H ; 
Write explicitly permutation matrix P of the selected partition; 
 
Output : ranking of partitions, with explicit values of P and ni 
for the recommended decomposition. 
 
 
 

5. EXPERIMENTAL RESULTS 
 
The advantages of solving large systems using heterogeneous  
distributed computing system are well established in the 
literature [1-3]. Experimental results using different 
partitioning methods (without overlapping), have already been 
presented [6-8]. Therefore, this section presents experimental 
results with partial overlapping using a distributed computing 
environment with three personal computers (p = 3) with similar 
performance ( w = [1,1,1]T ). Let consider the linear system of 
13 equations and 13 unknowns  A x = b, with: 
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By using de decomposition method of section 4 with M = A, 
two different partitions are chosen [12]: 
 

♦ one without overlapping, with n1 = 4, n2 = 5 and n3 = 4;  
 



♦ and another with partial overlapping that replicates x4 in the 
three processors, and dimensions n1 = n2 = n3 = 5. 

 
Experimental results, solving the above system with block-
Jacobi’s method, are presented in Table 5.1. There, it can be 
seen that the proposed decomposition method finds a partition 
with overlapping that solves the problem in fewer iterations, 
and consequently, in less time than the one without 
overlapping. Note that the decomposition method presented in 
section 4 would choose in Phase 4 the partition with 
overlapping as the recommended one, because it has a smaller 
ρ(H).  
 
Similar results are reported in [12] where there is an example 
in which no partition without overlapping solves a 13 X 13 
linear system of equations, while the decomposition method of 
section 4 finds a partition with overlapping that can be solved 
in parallel without difficulties.  
 
 Decomposition 

 without Overlapping with Overlapping 
  Dimension m = 13 n = 15 
  ρ(H) 0.8172 0.3780 
  Iterations 18 9 
  Time 0.6179 s 0.3676 s 

 
Table 5.1 Experimental results solving the 13 X 13 system. 

 
Another (sparse) linear system of 100 equations with 100 
unknowns is presented in [12] and solved with the same 
computing resources, with the results presented in Table 5.2. 
Again, the proposed decomposition method is able to find a 
partition with partial overlapping that can be solved in fewer 
iterations than the one without partial overlapping. Once more, 
the solution with partial overlapping is faster. 
 
 Decomposition 

 without Overlapping with Overlapping 
  Dimension m = 100 n = 102 
  Iterations 21 12 
  Time 0.78939 s 0.45108 s 

 
Table 5.2 Experimental results solving a 100 X 100 system. 

 
In short, the systems of equations presented above are useful to 
probe that partial overlapping may be used not only with small 
problems, as the one presented in section 3, but with larger 
ones. Moreover, the examples are interesting to show that the 
decomposition method presented in section 4 is able to 
recommend good partitions using partial overlapping. 
However, if partial overlapping is that useful,  
 

why most professionals do not use it?. 
 
To have a better insight of the way the decomposition method 
works and to try to find an answer of the above question, a 
number of randomly generated linear systems of equations of 
dimension 100, with different percentage C of zeros (C= 0%, 
30%, 50%, 70%, and 90%, to experiment with sparse 

matrices), were solved with different number of processors (p = 
2, 3, 4, 5, ...). Each 100X100 randomly generated problem was 
partitioned using the decomposition method of section 4, for 
different values of the parameters α and LimOver used by the 
method of section 4. 
 
After studying 100 randomly generated problems for each set 
of parameters [C, p, α, LimOver], we got to the results and 
recommendations that follows. 
 
♦ The number of overlapped unknowns increases with 

LimOver, as expected. It was found experimentally that a 
good a-priori choice may be:  

LimOver = Pm + 2 De; 
that way, only highly coupled variables can be overlapped. 
 

♦ The parameter α, used to decide if two links are equally 
strong, is not very important for the decomposition method. 
In fact, if it is reasonable in a wide range (1% to 10% of the 
mij values), the same decomposition is recommended by 
the method. As expected, the number of recommended 
overlapping may increase slightly with α. 

 
♦ The percentage C of zeros does not change significantly the 

possibility of using partial overlapping. However, it was 
noted that the number of overlapped variables 
recommended by the decomposition method may decrease 
for extreme values of C (too large or too small). 

 
♦ In general, there is a very small number of problems for 

which partial overlapping is recommended. According to 
our experiments, no more than 3% of the problems can 
benefit from using partial overlapping. This result seems 
the main reason why people do not bother to use partial 
overlapping, unless it is too obvious to use a decomposition 
technique. 

 
♦ It was noted that the number of overlapped variables 

increases with the number of processors; therefore, partial 
overlapping may become more important when we try to 
solve very large problems with a large number of 
processors. 

 
In conclusion, partial overlapping has been rarely used in 
practical problems because it is very difficult to find a-priori 
good partitions with partial overlapping and an exhausted 
method to find a good partition is out of possibilities becuase 
the space of possible partitions is combinatorial. To make it 
worth for practical applications, only a very small percentage 
of problems can benefit from the partial overlapping technique 
when solved in parallel. In consequence, the partial 
overlapping technique was not thoroughly studied even though 
it is known for more than a decade [9]. This situation may now 
change with the proposed decomposition technique that 
automatically recognizes situations for which the use of partial 
overlapping technique may be very useful and recommends 
good partitions that can benefit from this technique. 
 



6. CONCLUSIONS 
 
In view of the advent of parallel and distributed computer 
systems, as the existing networks, several decomposition 
methods have been published with the idea of solving a large 
problem using the existing computing resources. However, 
most of the published techniques do not have the ability of 
controlling the size of each subproblem in such a way that load 
balancing between heterogeneous processors can be 
accomplished. 
 
To overcome this problem, the authors proposed an heuristic 
technique, consisting of 4 sequential phases, that has the ability 
of decomposing a problem in a given number of subproblems, 
with a load balance proportional to the relative performance of 
the processors to be used in the resolution. In each phase of the 
proposed method, an expert user can interact with the method 
by suggesting different parameters, the interest in considering 
partial overlapping, or even partitions that may look good a-
priri . Phase 4 of the method makes a ranking of the better 
partitions, based on a parameters that can assure convergence 
of an iterative implementation, even in an asynchronous 
environment. 
 
A very unique feature of the proposed method is its ability to 
recommend partial overlapping in situations where it may be 
very useful. In fact, in section 3 it was presented examples 
where a problem can be better solved in parallel, when partial 
overlapping technique is used. Other examples with larger 
systems of equations (13X13 and 100X100) where presented in 
section 5, showing that partial overlapping may be vary useful 
when we have the ability of finding when and how to used it. 
 
To understand why most professionals do not use partial 
overlapping, a number of randomly generated systems of 
equations were studied, concluding that only in a small amount 
of problems (less than 3%) can benefit from this technique. 
Therefore, it was not worth finding good partitions with partial 
overlapping, specially because there was no published method 
to do it automatically. 
 
This problem may be now overcame with the presented method 
that is able to recommend good partitions with partial 
overlapping, that may have the additional benefit of using 
Asynchronous Team Algorithms [2] to solve each version of a 
critical variable with a different algorithm.  
 
As a consequence, the interest in partial overlapping may 
increase and more professionals may benefit from this 
technique when solving large problems using heterogeneous 
distributed computing facilities, as the existing computer 
networks which increase their aggregate CPU power with an 
impressive speed. 
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