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Abstract. Ant Colony Optimization (ACO) is a metaheuristic inspired
by the foraging behavior of ant colonies that has empirically shown its
effectiveness in the resolution of hard combinatorial optimization prob-
lems like the Traveling Salesman Problem (TSP). Still, very little theory
is available to explain the reasons underlying ACO’s success. An ACO al-
ternative called Omicron ACO (OA), first designed as an analytical tool,
is presented. This OA is used to explain the reasons of elitist ACO’s suc-
cess in the TSP, given a globally convex structure of its solution space.

1 Introduction

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo et al.
[3] that has been inspired by the foraging behavior of ant colonies. In the last
years ACO has empirically shown its effectiveness in the resolution of several
different NP-hard combinatorial optimization problems [3]; however, still little
theory is available to explain the reasons underlying ACO’s success. Birattari
et al. [1] developed a formal framework of ant programming with the goal of
gaining deeper understanding of ACO, while Meuleau and Dorigo [10] studied
the relationship between ACO and the Stochastic Gradient Descent technique.
Gutjahr [7] presented a convergence proof for a particular ACO algorithm called
Graph-based Ant System (GBAS) that has an unknown empirical performance.
He proved that GBAS converges, with a probability that could be made arbitrar-
ily close to 1, to the optimal solution of a given problem instance. Later, Gutjahr
demonstrated for a time-dependent modification of the GBAS that its current
solutions converge to an optimal solution with a probability exactly equal to 1
[8]. Stützle and Dorigo presented a short convergence proof for a class of ACO
algorithms called ACOgb,τmin [11], where gb indicates that the global best pher-
omone update is used, while τmin indicates that a lower limit on the range of the
feasible pheromone trail is forced. They proved that the probability of finding
the optimal solution could be made arbitrarily close to 1 if the algorithm is run
for a sufficiently large number of iterations. Stützle and Hoos [12] calculated a
positive correlation between the quality of a solution and its distance to a global
optimum for the TSP, studying search space characteristics. Hence, it seems rea-
sonable to assume that the concentration of the search around the best solutions
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found so far is a key aspect that led to the improved performance shown by
ACO algorithms. However, there is no clear understanding of the real reasons
of ACO’s success, as recognized by Dorigo and Stützle [4, 11]. They stated that
although it has been experimentally shown to be highly effective, only limited
knowledge is available to explain why ACO metaheuristic is so successful [4].

Considering that elitist versions of ACO outperform non-elitist ones [12],
this paper concentrates only on elitists. In search of a new ACO analytical tool
to study their success, a simple algorithm preserving certain characteristics of
elitist ACO was developed for this work. This is how the Omicron ACO (OA)
was conceived. This name comes from the main parameter used (Section 3.2),
which is Omicron (O). The OA simplicity facilitates the study of the main
characteristics of an ACO in the TSP context, as explained in the following
Sections.

The TSP is summarized in Section 2, while the standard ACO approach and
the OA are presented in Section 3. The behavior of the OA for the problems
berlin52, extracted from TSPLIB1, and for a small randomly chosen TSP are
shown in Section 4. In Section 5, the core of this paper is presented, analyzing
the reasons of ACO’s success in the TSP. Finally, the conclusions and future
work are given in Section 6.

2 Test Problem

In this paper the symmetric Traveling Salesman Problem (TSP) is used as a test
problem to study the OA, given the recognized ACO success in solving it [3, 12].

The TSP can be represented by a complete graph G = (N, A) with N being
the set of nodes, also called cities, and A being the set of arcs fully connecting
the nodes. Each arc (i, j) is assigned a value d(i, j) which represents the distance
between cities i and j. The TSP is stated as the problem of finding a shortest
closed tour r∗ visiting each of the n = |N | nodes of G exactly once.

Suppose that rx and ry are TSP tours or solutions over the same set of n
cities. For this work, l(rx) denotes the length of tour rx. The distance δ(rx, ry)
between rx and ry is defined as n minus the number of edges contained in both
rx and ry.

3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of
ant colonies [3]. In the last years, elitist ACO has received increased attention by
the scientific community as can be seen by the growing number of publications
and its different fields of application [12]. Even though there exist several ACO
variants, what can be considered a standard approach is next presented [5].

1 Accessible at http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/
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3.1 Standard Approach

ACO uses a pheromone matrix τ = {τij} for the construction of potential good
solutions. It also exploits heuristic information using ηij = 1

d(i,j) . Parameters
α and β define the relative influence between the heuristic information and the
pheromone levels. While visiting city i, Ni represents the set of cities not yet
visited and the probability of choosing a city j at city i is defined as

Pij =





τα
ij ·ηβ

ij∑
∀g∈Ni

τα
ig
·ηβ

ig

if j ∈ Ni

0 otherwise

(1)

At every generation of the algorithm, each ant of a colony constructs a com-
plete tour using (1). Pheromone evaporation is applied for all (i, j) according to
τij = (1 − ρ) · τij , where parameter ρ ∈ (0, 1] determines the evaporation rate.
Considering an elitist strategy, the best solution found so far rbest updates τ
according to τij = τij + ∆τ , where ∆τ = 1/l(rbest) if (i, j) ∈ rbest and ∆τ = 0 if
(i, j) /∈ rbest. For one of the best performing ACO algorithms, the MAX -MIN
Ant System (MMAS) [12], minimum and maximum values are imposed to τ
(τmin and τmax).

3.2 Omicron ACO

OA is inspired by MMAS, an elitist ACO currently considered among the best
performing algorithms for the TSP [12]. It is based on the hypothesis that it is
convenient to search nearby good solutions [2, 12].

The main difference between MMAS and OA is the way the algorithms
update the pheromone matrix. In OA, a constant pheromone matrix τ0 with
τ0
ij = 1, ∀i, j is defined. OA maintains a population P = {Px} of m individuals

or solutions, the best unique ones found so far. The best individual of P at any
moment is called P ∗, while the worst individual Pworst.

In OA the first population is chosen using τ0. At every iteration a new in-
dividual Pnew is generated, replacing Pworst ∈ P if Pnew is better than Pworst

and different from any other Px ∈ P . After K iterations, τ is recalculated. First,
τ = τ0; then, O

m is added to each element τij for each time an arc (i, j) appears
in any of the m individuals present in P . The above process is repeated every K
iterations until the end condition is reached (see pseudocode for details). Note
that 1 ≤ τij ≤ (1 + O), where τij = 1 if arc (i, j) is not present in any Px, while
τij = (1 + O) if arc (i, j) is in every Px.

Similar population based ACO algorithms (P-ACO) [5, 6] were designed by
Guntsch and Middendorf for dynamic combinatorial optimization problems. The
main difference between the OA and the Quality Strategy of P-ACO [6] is that
OA does not allow identical individuals in its population. Also, OA updates τ
every K iterations, while P-ACO updates τ every iteration. Notice that any elitist
ACO can be considered somehow as a population based ACO with a population
that increases at each iteration and where older individuals have less influence
on τ because of the evaporation.
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Pseudocode of the main Omicron ACO

Input parameters: n, matrix D = {dij}, O, K, m, α, β
Output parameter: P (m best found solutions)

P = Initialize population (τ0)
Repeat until end condition

τ = Calculate pheromone matrix (P)
Repeat K times

Construct a solution Pnew using equation (1)
If l(Pnew) < l(Pworst) and Pnew /∈ P

P = Update population (Pnew , P )

Pseudocode of the function Initialize population (τ0)

Initialize set P as empty
While |P | < m

Construct a solution Px using equation (1)
If Px /∈ P then include Px in P

Sort P from worst to best considering l(Px)
Pworst = P0

Pseudocode of the function Calculate pheromone matrix (P)

τ = τ0

Repeat for every Px of P
Repeat for every arc (i, j) of Px

τij = τij + O
m

Pseudocode of the function Update population (Pnew , P )

P0 = Pnew

Sort P efficiently from worst to best considering l(Px)
Pworst = P0

4 Behavior of Omicron ACO

Definition 1. Mean distance from a tour r to P . δ(P, r) = 1
m

∑m
i=1 δ(Pi, r). If

r = r∗ it gives a notion of how close a population is to the optimal solution r∗.

Definition 2. Mean distance of P . δ(P ) = 2
m(m−1)

∑m−1
i=1

∑m
j=i+1 δ(Pi, Pj). It

gives an idea of the convergence degree of a population.

Boese studied in [2] the space of solutions of the TSP att532 of 532 cities.
2,500 runs of different local search heuristic were made. For each heuristic, h
different tours were stored in a set H = {Hi}. Each stored tour Hi has a length
l(Hi), a distance to r∗ denoted as δ(Hi, r

∗) and a mean distance to the other
solutions of H called δ(H, Hi). Boese calculated a positive correlation between all
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these 3 variables. Given that the set {l(Hi)} has a positive correlation with the
set {δ(H,Hi)}, Boese suggested a globally convex structure of the TSP solution
space. In other words, the more central the position of a solution Hi within
the set of solutions H is, the smaller its mean distance to the other solutions;
therefore, the smaller is its expected length l(Hi), i.e. the better the solution
is. Global convexity is not convexity in the strict sense [9]. Boese suggested the
analogy with a big valley structure, in which viewed from afar may appear to
have a single minimum, but which up close has many local minima [2, Fig. 1].
Boese found similar results for two random geometric instances with 100 and 500
cities. At the same time, the authors of the present work are studying TSPLIB
problems with identical conclusions. Also Stützle and Hoos calculated a positive
correlation between the quality of a solution and its distance to a global optimum
for the problems rat783 and fl1577 [12]. All these experimental results support
the conjecture of a globally convex structure of the TSP’s search space.

Based on the studies on local search heuristics mentioned above, the present
work uses the globally convex structure of the TSP solution space concept as
the main idea to explain the reasons of ACO’s success.

It is also interesting to observe the length of P ∗, l(P ∗); the mean length
of a population, l(P ) = 1

m

∑m
i=1 l(Pi) and the number of individuals ζ(P ) that

entered a population. Their mean values for several runs of the OA are denoted
as l(P ∗)M , l(P )M and ζ(P )M respectively. Accordingly, δ(P, r∗)M and δ(P )M

represent the mean value of δ(P, r∗) and δ(P ).

To maintain the number of possible tours to a manageable value, a random
TSP called omi1 was designed with 8 cities of coordinates (58,12), (2,73), (14,71),
(29,8), (54,50), (0,7), (2,91) and (44,53). Fig. 1 shows the evolution of the mean
variables above defined as a function of the number of iterations in 10 runs of
the OA. The left side of Fig. 1 presents the graphics for the TSP berlin52 (using
the parameters O = 600, m = 25, K = 1, 000, α = 1 and β = 2), while the
right side presents the graphics for the TSP omi1 (using the parameters O = 30,
m = 8, K = 10, α = 1 and β = 2).

The typical behaviors for both problems are similar to the mean behaviors
shown in Fig. 1 respectively. The correlation values between δ(P, r∗)M , δ(P )M ,
l(P ∗)M , l(P )M and ζ(P )M for the problem berlin52 are summarized in Table 1.

Table 1. Correlation of the OA behavior variables studied for the problem berlin52

δ(P, r∗)M l(P ∗)M l(P )M ζ(P )M

δ(P )M 0.990 0.957 0.977 -0.972
δ(P, r∗)M 0.928 0.957 -0.995
l(P ∗)M 0.996 -0.900
l(P )M -0.934
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Figure (e) l(P*)M
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Fig. 1. Evolution as a function of iterations of δ(P, r∗)M , δ(P )M , l(P ∗)M , l(P )M and
ζ(P )M for 10 runs. Left, for the problem berlin52. Right, for the problem omi1

It can be observed in Fig. 1 that δ(P, r∗)M , δ(P )M , l(P ∗)M and l(P )M de-
crease in the initial phase, while ζ(P )M increases. In other words, new individuals
with shorter length enter P at the beginning of a run; these individuals get closer
to each other and at the same time they get closer to r∗. In the final phase the
variables remain almost constant. It can be said that almost no individuals enter
P and that δ(P, r∗)M results smaller than δ(P )M , which means that the individ-
uals finish closer to r∗ than to the other individuals of P . These results motivate
the analysis of the reasons of ACO’s success in the next section.

5 Reasons of ACO’s Success in TSP

The following exhaustive study is presented using the problem omi1 with 8 cities
considering the space restrictions of this publication. The same exhaustive study
was made using other randomly chosen problems with 7 and 9 cities and the
results were very similar, making unnecessary any repetition in this paper.
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5.1 Geometry of the Problem

Definition 3. S = {rx}, i.e. the whole discrete search space of a TSP. Ω will
denote a subspace of S, i.e. Ω ⊆ S.

Definition 4. ΩP = {rx| δ(P, rx) < δ(P )}, i.e. the set of tours rx with a mean
distance to population P shorter than the mean distance of P . ΩP is a central
zone of P , as illustrated in Section 5.3, Fig. 5 (b).

Definition 5. Ω(e). Ω conformed by the e best solutions of S; e.g. Ω(100) de-
notes the set of the 100 shortest tours.

Inspired by [2], Fig. 2 presents l(rx) as a function of δ(rx, r∗) for the whole
space S of the test problem omi1. As in previous works [2, 12], a positive correla-
tion can be observed. For this omi1 problem a correlation of 0.7 was calculated.
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Fig. 2. l(rx) versus δ(rx, r∗) ∀rx ∈ S

Fig. 3 shows l(rx) as a function of δ(Ω(e), rx) ∀rx ∈ S. For e = 2, 520
(Ω(2, 520) = S), Fig. 3 (a) clearly shows that the correlation of the variables is
0 since the mean distance from any solution to all the others is the same. Fig.
3 (b) shows the same graph for e = 2, 519, i.e. eliminating the worst solution
from S. For this case the correlation increases to 0.521. Finally, Fig. 3 (c) draws
the graph for e = 1, 260 (best half solutions) and the correlation between the
variables is 0.997. These results are consistent with the suggestion of a globally
convex structure of the TSP solution space, since the smaller the distance of
a solution rx to a set of good solutions (and thus, more central its position in
Ω(e) ⊂ S), the smaller its expected tour length is.

Definition 6. Q(e) = {Q(e)x} is defined as a set of randomly chosen elements
of Ω(e) with cardinality |Q(e)|.
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Fig. 3. l(rx) versus δ(Ω(e), rx) ∀rx ∈ S for different values of e

Given the interesting geometrical characteristic of Ω(e), a good question
is if this globally convex property is maintained for Q(e). To understand the
importance of this question, it should be noticed that a population P of an
OA may be considered as Q(e). Fig. 4 shows l(rx) as a function of δ(Q(e), rx)
∀rx ∈ S. Randomly selected Q(e) with |Q(e)| = 25 for different values of e are
presented in figures 4 (a) to (d). The figure shows individuals of Q(e), denoted
as Q(e)x and the elements of ΩP for P = Q(e), denoted as ΩQ(e). As can be seen
in Fig. 4 (b) to (d) the best solutions are in ΩQ(e); therefore, it seems convenient
to explore ΩQ(e).

To interpret Fig. 4 better, Table 2 presents the correlation % between l(rx)
and δ(Q(e), rx) ∀rx ∈ S for the four different Q(e) of Fig. 4. To compare the
experimental results of Fig. 4 with average values for 1,000 randomly chosen
Q(e), Table 2 also presents the calculated average %M for the same parameters
e, showing that Fig. 4 represents pretty well an average case.

Table 2. Correlation between l(rx) and δ(Q(e), rx) ∀rx ∈ S for different values of e

e = 2, 520 e = 1, 890 e = 1, 260 e = 630

Correlation % (for Fig. 4) -0.201 0.387 0.641 0.862
Experimental mean correlation %M 0.001 0.425 0.683 0.836

As seen in Table 2 there is no meaningful correlation %M in Q(2, 520), as
happened with Ω2,520 = S. When decreasing the value of e, %M increases as
happened with the correlation calculated for Ω(e). Thus, with good probability,
Q(e) is also globally convex (this probability increases with |Q(e)|). Considering
the global convexity property, it can be stated that given a population P = Q(e)
of good solutions, it is a good idea to search in a central zone of P and specially
in ΩP , which contains the solutions with the shortest distance to P , given the
positive correlation between the quality of a solution and its distance to P .
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Fig. 4. l(rx) versus δ(Q(e), rx) ∀rx ∈ S for different values of e

5.2 OA in a Globally Convex Geometry

OA concentrates an important proportion of its search of new solutions in ΩP .
This can be understood because in the construction of a new solution Pnew, a
larger probability is assigned to the arcs of each individual of P . This can be
seen as a search made close to each individual of P . As a consequence, Pnew

is expected to have several arcs of Px ∈ P , which means that the expected
δ(P, Pnew) should be smaller than δ(P ), i.e. Pnew is expected to be in ΩP .

Experimental results ratify this theory. 1,000 populations Q(e) were taken
randomly and 1,000 new solutions Q(e)new were generated with each population,
using equation (1) with O = 600, |Q(e)| = 25, α = 1, β = 2 for different values of
e. Table 3 shows the proportion p of Q(e)new which lies inside ΩQ(e), the mean
cardinality of ΩQ(e) (denoted w) and the relation p

w (that may be understood
as the proportion of ΩQ(e) explored in average when generating each Q(e)new).

At the very beginning of an OA computation, e is very large and there is a
good probability of generating a solution in ΩP (see p in Table 3 for e = 2, 520).
After progressing in its calculation, e decreases and so does |ΩP |; therefore, it
becomes harder to find a new solution in ΩP as shown in Table 3 (see how w
and p decreases with e). Even though p decreases, it should be noticed that p

w ,
which is the proportion of ΩP explored with each new individual, increases, i.e.
OA searches more efficiently as computation continues.
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Table 3. Mean values p, w y p
w

for different values e

e = 2, 520 e = 1, 890 e = 1, 260 e = 630

p 0.758 0.718 0.636 0.516
w 1,282.06 1,098.42 761.83 372.06
p
w

5.91e-4 6.53e-4 8.34e-4 13.86e-4

5.3 Two-Dimension Interpretation of OA Exploration Space

For didactic reasons, an analogy between the n-dimensional TSP search space
S and a two-dimension interpretation is presented. First, Fig. 5 (a) shows that
the search nearby 3 points implies a concentration of the exploration in their
central area. The intersection of the areas close to each point is their central
area, i.e. the search nearby every Px ∈ P , done by OA, implies an exploration
in the central zone of P , a recommended search region according to Section 5.1.

Experimentally, the area composed by the points where its geometrical dis-
tance to a randomly chosen population of 25 points is smaller than the mean
distance of the population is shown in Fig. 5 (b). This is the two-dimension in-
terpretation of ΩP and it is a central area in the population. As a consequence,
OA’s ability to search mainly in the central zone of P , means that it searches
with a good probability in ΩP .

Search space

(a)

Central
  zone

Px

Search space

(a)

Central
  zone

Px

Central zone in 2d

(b)

Central
  zone

Px

Central zone in 2d

(b)

Central
  zone

Px
ΩP

Fig. 5. (a) Simplified view of the search zone nearby all solutions of P (ΩP ) (b) Geo-
metrical central zone of a population of 25 randomly chosen points

5.4 Reasons Underlying ACO’s Success

In Fig. 6 the n-dimensional TSP search space is simplified to two dimensions
for a geometrical view of the OA behavior. To understand the typical behavior
of OA after the initial phase, a population P1 = {P1x} = Q(e) for Q(e) ⊂ S
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of good solutions uniformly distributed is assumed in Fig. 6. As seen before,
OA concentrates the search of new solutions in ΩP1 and replaces the worst
solution of P1 (P1worst) by a new solution Pnew of smaller length l(Pnew). A
new population P2 is created including Pnew. This is shown in Fig. 6 with a
dotted line arrow. As a consequence, it is expected that δ(P2, r∗) < δ(P1, r∗)
because there is a positive correlation between l(rx) and δ(rx, r∗). Similarly,
δ(P, Pnew) < δ(P, Pworst) because there is a positive correlation between l(rx)
and δ(P, rx), therefore δ(P2) < δ(P1), i.e. it is expected that the subspace where
the search of potential solutions is concentrated decreases, as experimentally
verified in Section 5.2. Another easily measured property is that l(P2) < l(P1).
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Fig. 6. Simplified view of OA behavior

OA performs this procedure repeatedly to decrease the search zone where
promising solutions are located. Considering population Pz = {Pzx} for z >> 2,
Fig. 6 shows how ΩPz has decreased considerably as a consequence of the globally
convex structure of the TSP search space. At this point it should be clear that
the main reason of OA’s success is its ability to search in a central zone of P ,
where usually better solutions lie. This analysis is consistent with the empirical
behavior of the OA observed in Section 4 for the problems berlin52 and omi1.

Given that any P-ACO maintains a population of individuals P , as the pre-
sented OA, similar analysis applies to explain its success. In other words, the
search is mainly oriented towards the central zone of P , where good solutions
are usually found. Finally, as already mentioned in Section 3.2, any elitist ACO
may be considered as a P-ACO and therefore the same explanation applies.

6 Conclusions and Future Work

OA concentrates the search in a central zone ΩP of its population P . In globally
convex problems, good solutions are usually found in this region; therefore, OA
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concentrates its search in a promising subspace. Every time a good solution is
found, it enters the population reducing the promising search zone iteratively.
Thus, this work explains the main reasons of OA’s success, and any elitist ACO
in general (e.g. MMAS).

OA does not use positive feedback. Hence, elitist ACO does not necessarily
share the same reasons of success with real ants, even though ACO was in-
spired by real ants behavior. This suggests not to limit the study of useful ACO
properties to real ants behavior.

This work was limited to the analysis of elitist ACO in globally convex struc-
tures. Based on the presented framework, a future work will study local con-
vergence, as well as other evolutionary algorithms and different problems. The
authors are also studying all TSPLIB problems with known optimal solutions to
experimentally confirm the globally convex property of the TSP search space.
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