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Abstract. The overwhelming number of alarms generated by rule-based net-
work intrusion detection systems makes the task of network security opera-
tors ineffective.  Preliminary results on an approach called EXOLAP shows 
that false positives alarms can be avoided by detecting changes on the stream 
of alarms using a data cube and median polish procedure. A data cube aggre-
gates alarms by hierarchical time frames, rule number, target port number and 
other feature attributes. The median polish procedure is used on materialized 
relational views of the data cube to detect changes on the stream of alarms. 
EXOLAP shows promising results on labeled and unlabeled test sets by fo-
cusing on exceptions on the normal stream of alarms, diverting the attention 
away from false positives. 

1   Introduction 

Given the proliferation of valuable assets on the Internet, it has become clear that 
network security operators are looking for robust intrusion detection systems (IDS) 
that are efficient, effective and easy to manage. A popular approach to network 
intrusion detection is rule-based intrusion detection systems (RBIDS) [1].  



Roughly speaking, RBIDS inspect network packets passing through the network 
and compare them with a set of rules.  A match triggers an alarm. RBIDS are very 
effective against known attacks and efficient when the set of rules is kept to a rea-
sonable size [1, 2]. Their main drawbacks are the impossibility of detecting un-
known attacks and the overwhelming amount of alarms that could be generated [2, 
3, 4].   

A great number of alarms generated by RBIDS are false positives [2, 3, 4] (i.e., 
attack did not actually take place).  False positives alarms could be reduced by tun-
ing the IDS or by eliminating the rules that causes the noise.  Sometimes, it is diffi-
cult to apply any of those changes because either the IDS belongs to another organi-
zation (e.g., outsourcing, cooperative distributed IDS) or it is not safe to delete a 
specific rule. Then, the security operator is faced with the problem of detecting true 
positive alarms among a pile of false positives. 

Several approaches have been proposed to reduce the number of alarms. Solu-
tions were proposed from the realm of data mining, machine learning and visualiza-
tion. The approach studied in this paper is based on Exploratory Data Analysis 
(EDA)[5] and On-line Analytical Processing (OLAP) techniques, and is called 
EXOLAP (EXploratory OLAP). 

EDA and OLAP techniques do not make assumptions about the data, and they are 
particularly effective when it is not known a priori what is being sought within the 
data [1, 2]. Experimental results show that EXOLAP can detect changes on the trend 
of alarms by focusing on exceptional data. Generalized alarms could be generated to 
turn the operator’s attention towards the interesting part of the data instead of a pile 
of false positives. 

EXOLAP is based on the progressive aggregation of alarms in multiple summa-
rized views of a time-related data cube [6]. The median polish procedure [5] is used 
on two-dimensional views of the data cube to detect changes on the stream of 
alarms. A predictable and manageable number of generalized alarms is generated to 
help network security operators focus on the most interesting data first. 

The rest of the paper is organized as follows: Section 2 surveys related work on  
alarm reduction.  Section 3 presents the EXOLAP approach to alarm reduction.  
Section 4 shows experimental results.  Section 5 discusses future work and conclud-
ing remarks. 

2   Related Work 

Erbacher and Sobylak [2] use exploratory data visualization tools to improve the 
work of forensic analysts. Vert et al. [7] propose a geometric approach to help in the 
analysis of large amounts of audit data. Their work is very similar to EXOLAP be-
cause it aids the analysis process by exploratory means.  However, their set of tools 
focuses more on visualization and raw audit data whereas EXOLAP focuses on real-
time alarm reduction using EDA techniques. 

Lee and Stolfo [8] apply several data mining techniques to system and network 
features in order to learn their normal behavior. Following Lee and Stolfo’s ideas, 



Manganaris et al. [3] use alarm features to characterize the normal stream of alarms 
using association rules. Ye and Li [9] use clustering and classification on alarm 
features. Most of the previous approaches require a carefully selected training set. 
Portnoy et al. [10] tackle this problem. 

Julisch and Dacier [11] use a conceptual clustering technique that reduces alarms.  
In a later work, Julish [12] uses clustering to find the root of most false positives. 
Shortcomings of their approaches include periodic tuning to adjust the model to 
changing network conditions, and the numerous parameters that are not trivial to 
determine [1]. 

Lately, several authors have proposed techniques to correlate alarms.  Cuppens 
and Miege [13] cluster, merge and correlate alarms in a cooperative IDS environ-
ment.  Ning et al. [14] build attack scenarios. They correlate alarms by partial match 
of prerequisites and consequences of attacks. Correlation condenses alarms to a few 
groups and facilitates the distinction between false and true positives. However, 
prerequisites and consequences conditions are trivial to find. 

3  The EXOLAP Approach to Alarm Reduction 

RBIDS may generate thousands of alarms per hour.  For obvious reasons, network 
security operators are unable to look at them individually.  Instead, they need a way 
to quickly filter false positives and focus on real threats.  Using EXOLAP, operators 
receive a small number of hinds pointing towards interesting segment of the alarms 
generated in the last few minutes.  

In EXOLAP a data cube aggregates raw alarms generated by RBIDS.  A data 
cube is a data abstraction that allows one to view aggregated data from a number of 
perspectives. We refer to the dimension to be aggregated as the measure attribute, 
while the remaining dimensions are known as the feature attributes.  

EXOLAP uses the number of alarms generated as its measure attribute. The fea-
ture attributes are based on the alarms’ attributes and the network packets that trig-
gered them.  A suggested set of feature attributes is: identifier of the rule that trig-
gered the alarm, time-to-live attribute of the packet, target port number, and at least 
two time related attributes.   

Time related attributes (e.g., T0, T1, …, TK) should be hierarchical.  The time at-
tribute at the lowest level, T0, should be small enough to detect recent attacks and 
big enough to avoid overloading the database storing alarms. For example, if T0=15 
minutes, alarms will be aggregated every fifteen minutes.  Time attributes at inter-
mediate levels, say Ti, should include the one below so that aggregated alarms at Ti-1 
could be used to fill the cells of time attribute Ti. Following the previous example, if 
T0=15 minutes, then the time attribute above, T1, could be sixty minutes (i.e., 
T1=T0*4).  

EXOLAP uses data cubes because they are useful in identifying trends [15] and 
offer a summary of the alarms generated by the RBIDS. Considerations regarding 
view materialization strategies and efficient implementation of data cubes are be-
yond the scope of this paper.  The authors used some of the ideas found in [15,16]. 



Figure 1 shows a three dimensional data cube with the corresponding feature attrib-
utes. Additional feature attributes can be easily included. 

 

 

Fig. 1. A three dimensional data cube aggregates the number of alarms by feature attributes 
(Rule), (Time), and (Target Port Number).  Besides, two dimensional tables show the aggre-
gated alarms by (Rule and Time), by (Rule and Target Port Number) and by (Time and Tar-
get Port Number)  

For simplicity, the following relational views are used in this paper: 
- By rule and time.  Every T0 minutes, a new column t0,i of alarm frequencies in 

the database is added to a table with the trend of alarms in the last T1 minutes at T0 
minutes intervals.  This view shows the number of alarms triggered by each rule 
during each time interval.  

Table 1 shows a Rule and Time view of alarms generated by a Snort system [17] 
installed on the Public Sector Metropolitan Area Network of Asuncion, Paraguay. In 
this case, a fifteen minutes interval is the smallest time attribute (i.e., T0=15 minutes 
and T1=60 minutes).   

- By target port number and time. This view shows the number of alarms at each 
time interval classified by the target port number of the network packet that trig-
gered the alarm. 

- By time-to-live and time.  This view summarizes the number of alarms triggered 
at each time interval classified by the time-to-live attribute of the network packet 
that triggered the alarm. This view is particularly useful to detect denial of service 
attacks as mentioned in [18] and group several alarms triggered by the same attack. 



Table 1. A two dimensional view of aggregated alarms from The Public Sector Metropolitan 
Area Network of Asuncion.  Each column represents a fifteen minutes time interval, and 
each row the number of alarms triggered by the rule (Rule ID) during the corresponding time 
interval 

Rule ID t0,0 
8:45PM 

t0,1 
9:00PM 

t0,2 
9:15PM 

t0,3 
9:30PM 

1 138 72 35 21 
7 0 0 0 2 

10 4 2 4 4 
14 1 5 1 0 
16 1 0 0 0 
17 60 60 60 60 
18 29 28 30 28 
19 440 451 434 459 
22 5 3 5 6 
24 0 0 0 1 
27 3 0 0 0 
29 0 1 0 1 
38 0 1 0 0 
46 0 1 0 0 

 
Once several relational views of the cube are built, an EDA technique is used to 

find the most interesting subset of alarms. The following section introduces this 
technique. 

3.1   Median Polish Procedure 

EDA techniques search data for exceptions or abnormal data values compared to 
values anticipated by a statistical model [5].  The statistical model tries to approxi-
mate the whole set of values and can be considered a good approximation of it. The 
exceptions found with this method can be used by an analyst of the data as a starting 
point in the search for anomalies, guiding the analyst’s work across a search space 
that can be otherwise very large [5, 15]. A traditional way of performing EDA is 
median polish procedure (MPP)[5]. 

MPP fits an additive model by operating on a data table. The algorithm works by 
alternately removing the row and column medians, and continues until the propor-
tional reduction in the sum of absolute residuals is less than a specified tolerance 
value or until there has been a maximum of iterations specified.  In principle, the 
process continues until all the rows in each dimension have zero median.  MPP finds 
the effect that each row and column has on the model, given by the algebraic sum of 
the medians that have been subtracted in that row at every step.  Besides, MPP pro-
vides the residual in each cell of the table, which tells how far apart that particular 
cell is from the value predicted by the model. 



To illustrate the procedure, the values Y={ yij} given in Table 1 are used as input 
to MPP.  The relational view Rule and Time can be considered a two-way table of 
the number of alarms generated per time frame.  An additive model can express the 
relationship between time and rule.  Equation 1 shows the additive model, where µ 
is the overall typical value for the whole table, αi is the row effect of row i, βj is the 
column effect of column j, and ιij is the deviation of yij from the model (i.e., resid-
ual) 

 

=ijr ijji ιβαµ +++  . (1) 

 
Table 2 shows the residual values for the two-way table given in Table 1.  The 

exceptional values on Table 1 are found by locating the largest absolute values on 
the residual table.  In Table 2, the cell on the first row and first column has the big-
gest absolute value.  

Table 2. The residual table for the two dimensional view of aggregated alarms in Table 1.  
Each column represents a fifteen minute time interval, and each row the deviation of the 
number of alarms triggered by the rule (Rule ID) with respect to the model built during the 
corresponding time interval 

 
Rule ID 8:45 PM 9:00 PM 9:15 PM 9:30 PM 

1 84.5 18.5 -18.5 -32.5 
7 0.0 0.0 0.0 2.0 

10 0.0 -2.0 0.0 0.0 
14 0.0 4.0 0.0 -1.0 
16 1.0 0.0 0.0 0.0 
17 0.0 0.0 0.0 0.0 
18 0.5 -0.5 1.5 -0.5 
19 -5.5 5.5 -11.5 13.5 
22 0.0 -2.0 0.0 1.0 
24 0.0 0.0 0.0 1.0 
27 3.0 0.0 0.0 0.0 
29 -0.5 0.5 -0.5 0.5 
38 0.0 1.0 0.0 0.0 
46 0.0 1.0 0.0 0.0 

 
In IDS terms, a big residual value means that there is a significant change in the 

trend of alarms. For example, the largest deviation value in Table 2 indicates an 
increase on alarms generated by the rule with id = 1 in the time window between 
8:45 PM and 9:00 PM.  Particularly, the largest positive value on the last column, 
9:30 PM, indicates a recent increase on the normal values on the table. 



Small residual values suggest that the stream of alarms of a particular type has 
been stable and can be considered “normal” noise. By examining the abnormal cells, 
the operator has reduced the searching space of alarms to the rule ID and time frame 
indicated.  The reduction obtained depends on the frequencies of alarms generated 
during that time frame.  This gives the operator enough flexibility to adapt to differ-
ent scenarios.  Since EXOLAP is exploratory, the final judgement is left to the ex-
pert.  In addition, generalized alarms could be generated for the top n exceptions on 
the last time interval of a particular view. 

The median polish procedure is used on other relational views of the data cube as 
well.  As a result, there are as many residual tables as relational views. 

In the following section, relational view construction and MPP are combined and 
automated to reduce the number of alarms to be inspected.   

3.2   Alarm Reduction 

The processes of building relational views of the data cube presented in the previous 
section can be automated.  First, a reasonable set of relational views should be cho-
sen.  Those views are materialized and updated at predefined time intervals as more 
alarms are generated by the RBIDS.  For example, the Rule and Time view given in 
Table 1 can be considered a moving time window.  Every T0=15 minutes, a new 
column, say t0,i, is added with the aggregated alarms seen in the last T0 minutes.  To 
save space, the oldest t0,j-minute interval (where j<i) could be aggregated on the 
next time frame level (e.g., T1=60 minutes). 

EXOLAP generates trend alarms (t-alarms) at every time interval tl,i of a time 
feature attribute Tl. Using the Rule and Time view shown in Table 1, t-alarms could 
be generated every fifteen minutes for each of the top n exceptions on that particular 
view.  Similarly, t-alarms are generated for other views of the data cube. With t-
alarms, operators can quickly locate potential hazards caused by a sudden increase 
or decrease on the number of alarms generated by a RBIDS. 

The advantage of using t-alarms is that the operator receives a predictable num-
ber of alarms pointing towards an interesting subset of raw alarms. The number of t-
alarms generated could be set ahead of time to a manageable number.  In this way, 
the operator is not overwhelmed and can start analyzing RBIDS alarms from the 
most interesting part.  

Equation 2 shows how to compute the number of t-alarms per hour. For every 
time related feature attribute Tl, we multiply the number of relational views (RVl) 
involving Tl by the number of exceptional values (n) retrieved from each relational 
view by the number of intervals Ti included in sixty minutes. 

 

t-alarms per hour =∑
−

=
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In the following section, experiments with EXOLAP show encouraging results on 
diverse sets of alarms, including labeled and unlabeled datasets of different sizes. 



4 Experimental Results 

EXOLAP was tested with four sets of alarms generated by Snort IDS version 1.9.1 
with default set of rules.  One of the systems was located on a Public Sector Metro-
politan Area Network of Asuncion, Paraguay.  Another set of alarms was generated 
by a Snort located on the Abilene network [19].  An additional set belongs to an IDS 
running at the University of Illinois at Chicago (UIC).  The last set of alarms was 
generated using DARPA99 Intrusion Detection Set [20]. Table 3 gives an overview 
of the datasets used. 

Table 3. Datasets used on experimental results.  Some characteristics are shown to indicate 
their diverse nature and evaluate the results on each set 

Dataset Network 
Type 

Number of 
Alarms 

Distinct 
Rules 

Time 
Span 

(in days)

Distinct 
Source IP 
Addresses

Distinct 
Target IP 
Addresses 

UIC       
Network 

LAN 592,121 52 180 20,161 2,429 

Pub. Sect. 
MAN 

MAN 430,794 67 7 514 272 

Abilene 
Network 

WAN 10,357,673 49,571 90 208,527 253,790 

DARPA99 Synthetic 23,050 84 10 109 187 
 
Three relational views were used during the experiment: Rule and Time, Time-

to-live and Time, and Target-port-number and Time views.  The data cube used 
time attributes T0=15 minutes and T1= 60 minutes (i.e., k=1).  MPP ran every T0 
minutes on all views and t-alarms were triggered for the biggest exception on each 
view (i.e., n=1). The reduction is computed as the number of RBIDS alarms to be 
examined on the exceptional cell pointed by t-alarms over the total number of 
RBIDS generated during the same time interval T0. Table 4 shows the reduction 
obtained. 

 Table 4. Average reduction on four datasets divided by Rule and Time view, Time-to-live 
and Time view, and Target-port-number and Time view  

Dataset Avg. Reduction on 
Rule-Time view 

Avg. Reduction on 
TTL-Time view 

Avg. Reduction on 
Port-Time view 

Public Sector MAN 77.98 % 84.39 % 67.72 % 
Abilene Network 80.52 % 85.49 % 78.98 % 
UIC Network 46.75 % 74.07 % 41.25 % 
DARPA 99 48.69 % 36.88 % 54.77 % 

 
In general, datasets DARPA99 and UIC network do not have many alarms at 15 

minute intervals. In order to obtain greater reduction on these datasets, a larger T0 
value was needed. 
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Fig. 2. Percentage of true positives alarms detected on the labeled dataset DARPA99 using 
EXOLAP. T-alarms were defined for the cell with the largest deviation value during the last 
time frame  

Figure 2 shows the percentage of true positives detected on the labeled dataset 
DARPA99 using EXOLAP. Most true positives detected were in the subset of raw 
alarms indicated by t-alarms (i.e., the cell with the biggest residual value). A big 
drop observed on April 5, 1999 was caused by many attacks taking place on an 
eleven minute interval and network packets having many different time-to-live and 
target port number values. In this case, most true positives were among the top five 
exceptional values indicated by t-alarms. Rule-Time view was not affected and 
managed to detect most true positives with the top t-alarm. 

5 Conclusion and Future Work 

Experimental studies with EXOLAP aim at reducing the number of intrusion alarms 
to be analyzed by network security experts.  A multidimensional data cube aggre-
gates alarms by several feature attributes.  MPP finds exceptional values or changes 
on the stream of alarms on two-dimensional views of the data cube. Tests on several 
datasets show promising reduction on the number of alarms to be examined.  In 
particular, the labeled dataset DARPA99 showed that EXOLAP could improve the 
effectiveness of  network security operators by focusing on the most interesting data 
first. 

In the future, EXOLAP will be tested with an n-dimensional extension of MPP 
for data cubes proposed by Barbará and Wu [15].  This will reduce the number of t-
alarms without significant computational demand, integrating several views into 
only one global view.  Intuitively, many change detection algorithms can also be 



applied to the data cube.  A performance comparison would be appropriate to study 
complexity and effectiveness of different algorithms. 

Further testing needs to be done on labeled datasets like DARPA99 to verify the 
reduction on the number of false positives versus the percentage of true positives 
detected by t-alarms. 

In addition, a distributed EXOLAP system is being designed to exploit the fact 
that views can be exchanged in a distributed IDS environment to improve the effi-
ciency and cooperation between composing IDS. 
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