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ABSTRACT  

 
This paper presents a parallel method, based on the 
sequential Point of Collapse method (PoC), to 
calculate the steady state voltage stability limit 
(point of collapse or critical point) of potentially 
large electrical power systems, using a distributed 
(and possible asynchronous) computer 
environment composed of a network of 
workstations or PCs. The parallelization of the 
sequential PoC method is based on a recently 
formalized technique called Team Algorithm (TA). 
Experimental results are presented, proving the 
advantages of the proposed method using a 
network of computers instead of the traditional 
single processor computer. 
 
Keywords:  Voltage Stability, Distributed 
Computer Environment,  Critical Point. 
 
 

1.  INTRODUCTION 
 
As electrical systems started to be demanded to 
operate in a way to achieve their maximum 
transmission capability, they started to suffer from 
voltage stability problems and in some cases they 
even collapsed. Therefore, the research of the 
Point of Collapse problem has been receiving great 
attention in the last few years [1]. One research 
approach is to associate the collapse phenomenon 
with the maximum load the system can withstand. 
Based on this proposal, some tools were developed 
to calculate such point under certain assumptions 
[2,3].  The present work follows the above 
approach. 

 
With respect to distributed processing using a 
network of workstations or PCs, important 

progress has been made concerning the 
development of low-cost technologies with high 
processing capacity.  At the present time, there is a 
world-wide tendency to use interconnected 
computers via networks [4].  However, one of the 
major drawbacks is the lack of adequate software 
to exploit its potential advantages in speedup, low 
cost to performance ratio, scalability, flexibility, 
etc. 
 
This paper is based on two different areas of 
research: the Point of Collapse Problem in an 
electrical power system and the parallel and 
distributed processing using Team Algorithms 
(TA).  The latter is a computational technique that 
allows solving a system of equations using hybrids 
of different methods, taking advantage of the 
parallelism in a distributed computer system, even 
in the presence of asynchronism [5,6]. 

 
The main idea behind a Team Algorithm is to 
partition a large-complex problem in several 
subproblems, solving each part in a different 
processor of the computer network. To do so, each 
processor may use a different method that updates 
its assigned variables, transmitting the updated 
values and receiving the variables updated by other 
processors, without blocking or interruptions. The 
calculation proceeds iteratively until global 
convergence is achieved. A general convergence 
analysis considering an asynchronous environment 
is studied in [6]. 
 
Some of the most outstanding features of the TA 
are:  to achieve a solution of algebraic equations 
that each of the combined algorithms can not solve 
individually, and to obtain a significant speedup 
when large scale problems are divided in smaller 
subproblems that can be easily solved in parallel. 



The major contribution of this work is to present a 
parallel method that efficiently calculates the point 
of collapse using a workstation or PC network that 
already exists in most organizations, instead of 
using expensive uniprocessor systems that are not 
always easily available in small organizations. 
 
Section 2 presents the point of collapse problem. 
The point of collapse method (PoC) and the 
proposed parallelization schemes are presented in 
Section 3. Experimental results are presented in 
Section 4, leaving the conclusions for Section 5.  
 
 

2.  THE POINT OF COLLAPSE PROBLEM   
 
The system of equations that represents the steady 
state behavior of a power system has the form [7]: 
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where   F N M N( , ):⋅ ⋅ ×  R R R� , 

            x 0, ∈RN   and  ΠΠΠΠ ∈RM . 
 
Here, x is the power system state vector (electrical 
bus voltage) and ΠΠΠΠ is a parameter vector of real 
and reactive load powers.  Although several valid 
operating states x are associated to a certain 
distribution ΠΠΠΠo  (under normal operating 
conditions), just one of them is of operative 
interest, which is denoted by xo . 
 
As the load vector ΠΠΠΠ varies from the current 
operating load ΠΠΠΠo ,  its corresponding steady state 
also varies according to (1).  Upon reaching a 
certain load distribution ΠΠΠΠ∗  at the busbars, 
equation (1) reaches a unique steady state solution 
x∗ , hence ( , )x∗ ∗ΠΠΠΠ  is denominated point of 

collapse.  This point has the property that for a 
larger load at the busbars there is no steady state 
solution.  In addition, the Jacobian matrix Fx  of 
(1) is singular at that point, having a unique zero 
eigenvalue with non-zero left and right 
eigenvectors [2]. 

 
Different load growth directions can be established 
at the operating point ΠΠΠΠo , determined by the 

unitary vector B in the RM  space; therefore, the 
load evolution could be represented by 
 
 ΠΠΠΠ ΠΠΠΠ= +o Bλ  (2) 
 
where λ is named scalar load parameter [3].   
 
For each load growth direction there is a possible 
point of collapse. The set of these points in  RM  is 
a hyper-surface, namely Σ, which limits the 
operating steady state space of the system.  Thus, 
for a point which belongs to Σ, the following 
equality holds: 
 
 ΠΠΠΠ ΠΠΠΠ∗ ∗= +o Bλ  (3) 
 
The line segment between ΠΠΠΠo  and ΠΠΠΠ∗  is the set of 
possible load vectors in B’s direction [7] and λ ∗  
represents a system stability index which 
determines the proximity of the point of collapse 
to the operating condition in the specified 
direction. 
 
 

3.  THE POINT OF COLLAPSE METHOD 
 
As the loads are increased and the electrical 
system approaches its load capability limit, the 
convergence of the load flow solution becomes 
more and more difficult using traditional methods 
such as the Newton-Raphson (NR). This is due to 
the aforementioned characteristic of system (1)’s 
Jacobian singularity at the critical point. One of 
the techniques used to overcome this problem is 
the Point of Collapse Method, which consists of 
solving the following system of equations [2]: 
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where c ∈RN  is a constant non-zero vector. On 
one hand, F( , )x 0ΠΠΠΠ =  guarantees that x is a 
solution of the load flow;  on the other hand, the 
equation F T

x x w 0( , )ΠΠΠΠ =  with c wT − =1 0 , ensures 

that x and the left eigenvector w of Fx  correspond 
to the Point of Collapse with an eigenvalue zero 
and a non-zero eigenvector. 



If we consider the parameter load vector as stated 
in (2), system (4) can be rewritten as: 
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which is a nonlinear system of equations of 
dimension n N= +2 1. 
 
To solve (5) using a distributed computing system, 
a good partitioning of the electrical system is 
needed. That may be obtained using any published 
method [8,9] that profits from the natural 
decoupling of the system.  Considering a system 
consisting of p processors, the resulting partition 
of F( )x 0=  may be written as: 
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where [ ]x x x x= 1 2
T T

p
T T

�  is the power system 

state vector. For a good global convergence in a 
distributed computer system, each function 
Fi 1 i p( , , , , )x x x� �  should predominantly depend 

on xi  (no dependence on xk k i ∀ ≠  implies 
perfect decoupling) [6]. 
 

Since F( , )x 0λ =  is the load flow equation 

including the scalar load parameter λ, we can use 
the partition criteria mentioned above.  Hence, 
equation (5) can be rewritten as: 
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where [ ]w w w w= 1 2
T T

p
T T

� . 

 
According to the above criteria, our partition is 

such that F k ik

T

ix  ∀ ≠   is relatively small compared 

to Fi

T

ix .  Therefore, equations Fk

T

k
k

p
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depend 

mostly on ( , )x wi i .  It follows that a good 
assignment for processor i would be: 
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On the other hand, the last equation of (7) depends 
on all w i ; making it difficult to decide a priori 

where it will best be solved.  Three possible 
solution schemes follow. 
 
First Scheme 
 

The first scheme consists of assigning the last 
equation of (7) to one processor, for example: 
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where processor 1 solves Φ1 = 0  updating 

( x w1 1, ,  λ ); while a processor i  (i ≠ 1) solves 

Φ i = 0  updating ( , )x wi i .  Convergence by this 
scheme was not achieved in any of the tested 
problems. 
 
Second Scheme 
 

In order to achieve convergence, it was decided to 
assign the last equation of (7) to all processors, 
such that: 
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The implementation of this procedure, known as 
partial overlapping [10], is illustrated in Figure 1, 
where an equation with weights ωk  and ωλ  
selected such that 

 ω ωλ + =
=
� k
k

p

1

1 (11) 

 
is used to make sure that all λk  converge to the 

same solution λ∗  [5]. 
 
In Figure 1, Gi  and Gj  are the algorithms that 

update the variables, in this case, the NR’s 
method, of processors i and j respectively. 
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Figure 1.  Second and third schemes 

 
Particularly, it can be shown that for p = 2 , at any 
iteration m, the following equality holds: 
 

 c w c w1 1
2

1 1

T m T m( ) ( )+ = = const. 

 c w c w2 2
2

2 2

T m T m( ) ( )+ = = const. (12) 
 

This imposes an additional restriction on the 
possible directions of eigenvector w with respect 
to the original equation (5).  In fact, convergence 
could not be achieved in any of the tested 
problems indicated in Tables 1 and 2 using this 
scheme.  Therefore a third scheme, also using 
partial overlapping, is proposed. 

 
Third Scheme 
 

To overcome the above problem, it is possible to 
modify the last equation of (10) by: 
 
 c wT + − =κλ ξ 0  (13) 

 
where κ and ξ are constants. Equation (13) still 
guarantees a non-zero eigenvector w without the 
additional restriction previously mentioned.  
Introducing this modification into equation (10) 
yields to: 
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This third scheme can still be represented by the 
diagram in Figure 1 and it gives good experimental 
results, as shown in Tables 1 and 2. 

 
 
 

4.  EXPERIMENTAL RESULTS 
 
The described schemes were implemented in a 
heterogeneous network of workstations (a SUN 
SPARC-Station 5 & a DEC 3000) and several 
Personal Computers (PCs) using  PVM (Parallel 
Virtual Machine) libraries in an extended version 
of ANSI C. Proposed schemes were tested in three 
different implementations: sequential, parallel 
synchronous and parallel asynchronous versions. 
However, for reasons of shortness and for 
establishing an easier comparison frame between 
sequential and parallel algorithms, the 
experimental results presented in this section are 
limited to a distributed system of a PCs with Intel 
Pentium processors of 100 MHz and 8 MB of 
RAM, running under LINUX operating system. 



 
Experimental results are presented in Tables 1 and 
2 for IEEE’s 30 and 118 busbar systems, 
respectively. These results were obtained for 

ωλ = 0 , κ = 3, ξ = 10, [ ]c = 1 1 1�
T
 and for 

a tolerance ε = 0 05. . 
 
The speedup is defined as: 
 

 Sp = best sequential time

parallel method time
 (15) 

 
As for the initial condition, the same criteria used 
in the traditional sequential solution method [2] 
was used for IEEE 30 busbar system.  However, in 
the second test problem, the IEEE 118 busbar 
system, the initial condition together with the 
partition method proved to be critical for 
convergence.  Initial estimates were selected close 
to the solution with a deviation defined by: 
 

( ) ( ) ( )∆z x x w w( ) ( ) ( ) ( ):0 0 0 0= − − −�
��

�
��

∗ ∗ ∗T T T
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As for the partition criteria, the method presented 
in [11] was used in all of the tested problems. 
 
The major implementations performed were: 
 
Sequential 
 

Traditional solution of equation (5) using a single 
processor. 
 
Synchronous TA 
 

Each processor solves its corresponding set of 
equations (14), exchanging the updated values 
after each iteration (see Figure 1);  i.e. an 
administrator program waits until all processors 
have finished their iteration and assembles the new 
set of variables broadcasting it to all processors so 
they can perform another iteration until all errors 
are within tolerance. 
 
A simplified algorithm for a generic processor i 
follows: 
 

do while (no global convergence) 

 wait until complete vector ( )x w, ,λ  is 

received; 
 check local convergence; 
 if local convergence is not achieved 

update ( )x wi i i, ,λ  solving Φi = 0 by NR; 

 send ( )x wi i i, ,λ  to the administrator; 

 
And for the administrator: 
 
do while (no global convergence) 

 wait until all ( )x wk k k, ,λ  are received; 

 broadcast complete updated vector 

( )x w, ,λ  to all processors; 

 if all processors detect local 
convergence, global convergence is 
achieved; 

 

Asynchronous TA 
 

Each processor solves its corresponding set of 
equations (14), exchanging the updated values 
after each iteration, as in the method previously 
described, but without blocking or interruptions.  
Before starting a new iteration, the most recently 
updated values of the variables received so far are 
read and after finishing the iteration, each 
processor broadcasts its updated variables to the 
other processors.  If all processors detect their 
local errors within tolerance, the administrator 
assembles a complete set of variables and 
broadcasts it to all processors so they can perform 
a convergence check with the same global possible 
solution vector. 
 
A simplified algorithm for a generic processor i 
follows: 
 
do while (no global convergence) 
 if the administrator sends a complete 

vector ( )x w, ,λ , check for local 

convergence; 
 if new information is received from 

processor k, update ( )x wk k k, ,λ ; 

 check local convergence and update 

( )x wi i i, ,λ  solving Φi = 0 by NR; 

 broadcast ( )x wi i i, ,λ  to all processors 

k i≠ ; 
 if local convergence was achieved, also 

send ( )x wi i i, ,λ  to the administrator; 

 
For the administrator: 
 



do while (no global convergence) 

 wait until all ( )x wk k k, ,λ  are received; 

 broadcast complete vector ( )x w, ,λ  to 

all processors; 
 wait until all processors have checked 

for local convergence.  Under these 
circumstances, if all processors detect 
local convergence again, global 
convergence is achieved; 

 

Table 1.  Experimental results for IEEE 30 
 

Table 2.  Experimental results for IEEE 118 
 

 Note: seq. Sequential 
  S Parallel, synchronous TA 
  A Parallel, asynchronous TA 

 
5.  CONCLUSIONS 

 
The present paper relates two different areas of 
research: the Point of Collapse Problem in an 
electrical power system,  and the parallel and 
distributed processing using Team Algorithms [12]. 
 
After presenting three different implementation 
schemes for parallelizing the PoC method, it is 
concluded that the best scheme uses partial 
overlapping and reformulates the original equations. 
 
By considering the experimental results presented in 
Tables 1 and 2, it was possible to conclude that: 
 
• The advantage of partial overlapping is 

demonstrated when there exist critical equations 
that can not be assigned to only one processor. 

 
• In all of the tested problems where convergence 

was achieved, the use of parallelism enables 
substantial reduction in the execution time 
compared to the sequential method, even in a 
small problem such as the IEEE 30 (Table 1). 

 
• The major limitation of the proposed method is 

the  partitioning of the system.  In fact, the 
partitioned system has a higher sensibility to 
initial conditions and it is, in general, much 
harder to converge. 

 
• Considering the IEEE 118 system, it can be seen 

in Table 2 that the asynchronous TA converged 
faster than the synchronous for two and three 
processors.  Particularly, for p = 3 Table 2 shows 
an outstanding asynchronous speedup due to a 
synergetic effect [6].  For p = 4  and 5, however, 
the asynchronous TA reached the solution slower 
than the synchronous but still with a high 
speedup. 

 
In short, this paper presents an efficient method that 
enables the solution of the Point of Collapse 
Problem using an existing network of PC’s or 
workstations instead of the more traditional but 
expensive uniprocessor systems. 
 

Number of 
Processors 

Number of 
Iterations 

Time 
[s] 

Speedup 
Sp  

1 7 11 1.00 
2 20 7 1.57 
3 42 5 2.20 
4 41 4 2.75 

Number of 
Processors 

Method Initial Condition’s 
deviation ∆z( )0  

[%] 

Number of 
Iterations 

Time [s] Speedup 
Sp  

1 seq. 1 - 5 3 161 1.00 
2 S 3 5 90 1.79 
 A 3 -- 79 2.04 
3 S 3 23 70 2.30 
 A 3 -- 19 8.47 
4 S 3 19 31 5.19 
 A 3 -- 38 4.24 
5 S 3 17 13 12.38 
 A 3 -- 16 10.06 
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