
Solving the Point of Collapse Problem
using a Heterogeneous Computer Network

Benjamín Barán, Freddy Cardozo, José Atlasovich, Christian Schaerer

Centro Nacional de Computación
Universidad Nacional de Asunción

P.O.Box: 1439 - Campus Universitario
San Lorenzo, Paraguay

ABSTRACT

This paper presents a parallel method, based on the
sequential Point of Collapse method (PoC), to
calculate the steady state voltage stability limit
(point of collapse or critical point) of potentially
large electrical power systems, using a distributed
(and possible asynchronous) computer
environment composed of a network of
workstations or PCs. The parallelization of the
sequential PoC method is based on a recently
formalized technique called Team Algorithm (TA).
Experimental results are presented, proving the
advantages of the proposed method using a
network of computers instead of the traditional
single processor computer.

Keywords: Voltage Stability, Distributed
Computer Environment, Critical Point.

1. INTRODUCTION

As electrical systems started to be demanded to
operate in a way to achieve their maximum
transmission capability, they started to suffer from
voltage stability problems and in some cases they
even collapsed. Therefore, the research of the
Point of Collapse problem has been receiving great
attention in the last few years [1]. One research
approach is to associate the collapse phenomenon
with the maximum load the system can withstand.
Based on this proposal, some tools were developed
to calculate such point under certain assumptions
[2,3]. The present work follows the above
approach.

With respect to distributed processing using a
network of workstations or PCs, important

progress has been made concerning the
development of low-cost technologies with high
processing capacity. At the present time, there is a
world-wide tendency to use interconnected
computers via networks [4]. However, one of the
major drawbacks is the lack of adequate software
to exploit its potential advantages in speedup, low
cost to performance ratio, scalability, flexibility,
etc.

This paper is based on two different areas of
research: the Point of Collapse Problem in an
electrical power system and the parallel and
distributed processing using Team Algorithms
(TA). The latter is a computational technique that
allows solving a system of equations using hybrids
of different methods, taking advantage of the
parallelism in a distributed computer system, even
in the presence of asynchronism [5,6].

The main idea behind a Team Algorithm is to
partition a large-complex problem in several
subproblems, solving each part in a different
processor of the computer network. To do so, each
processor may use a different method that updates
its assigned variables, transmitting the updated
values and receiving the variables updated by other
processors, without blocking or interruptions. The
calculation proceeds iteratively until global
convergence is achieved. A general convergence
analysis considering an asynchronous environment
is studied in [6].

Some of the most outstanding features of the TA
are: to achieve a solution of algebraic equations
that each of the combined algorithms can not solve
individually, and to obtain a significant speedup
when large scale problems are divided in smaller
subproblems that can be easily solved in parallel.

The major contribution of this work is to present a
parallel method that efficiently calculates the point
of collapse using a workstation or PC network that
already exists in most organizations, instead of
using expensive uniprocessor systems that are not
always easily available in small organizations.

Section 2 presents the point of collapse problem.
The point of collapse method (PoC) and the
proposed parallelization schemes are presented in
Section 3. Experimental results are presented in
Section 4, leaving the conclusions for Section 5.

2. THE POINT OF COLLAPSE PROBLEM

The system of equations that represents the steady
state behavior of a power system has the form [7]:

 F

f

f N

(,)

(,)

(,)

x

x

x

0ΠΠΠΠ
ΠΠΠΠ

ΠΠΠΠ
=
�

�

�
�
�

�

�

�
�
�

=
1

� (1)

where F N M N(,):⋅ ⋅ × R R R� ,

 x 0, ∈RN and ΠΠΠΠ ∈RM .

Here, x is the power system state vector (electrical
bus voltage) and ΠΠΠΠ is a parameter vector of real
and reactive load powers. Although several valid
operating states x are associated to a certain
distribution ΠΠΠΠo (under normal operating
conditions), just one of them is of operative
interest, which is denoted by xo .

As the load vector ΠΠΠΠ varies from the current
operating load ΠΠΠΠo , its corresponding steady state
also varies according to (1). Upon reaching a
certain load distribution ΠΠΠΠ∗ at the busbars,
equation (1) reaches a unique steady state solution
x∗ , hence (,)x∗ ∗ΠΠΠΠ is denominated point of

collapse. This point has the property that for a
larger load at the busbars there is no steady state
solution. In addition, the Jacobian matrix Fx of
(1) is singular at that point, having a unique zero
eigenvalue with non-zero left and right
eigenvectors [2].

Different load growth directions can be established
at the operating point ΠΠΠΠo , determined by the

unitary vector B in the RM space; therefore, the
load evolution could be represented by

 ΠΠΠΠ ΠΠΠΠ= +o Bλ (2)

where λ is named scalar load parameter [3].

For each load growth direction there is a possible
point of collapse. The set of these points in RM is
a hyper-surface, namely Σ, which limits the
operating steady state space of the system. Thus,
for a point which belongs to Σ, the following
equality holds:

 ΠΠΠΠ ΠΠΠΠ∗ ∗= +o Bλ (3)

The line segment between ΠΠΠΠo and ΠΠΠΠ∗ is the set of
possible load vectors in B’s direction [7] and λ ∗
represents a system stability index which
determines the proximity of the point of collapse
to the operating condition in the specified
direction.

3. THE POINT OF COLLAPSE METHOD

As the loads are increased and the electrical
system approaches its load capability limit, the
convergence of the load flow solution becomes
more and more difficult using traditional methods
such as the Newton-Raphson (NR). This is due to
the aforementioned characteristic of system (1)’s
Jacobian singularity at the critical point. One of
the techniques used to overcome this problem is
the Point of Collapse Method, which consists of
solving the following system of equations [2]:

 Φ =
−

�

�

�
�
�

�

�

�
�
�

=
F

F T

(,)

(,)

x

x w

c w

0x

ΠΠΠΠ
ΠΠΠΠ

T 1

 (4)

where c ∈RN is a constant non-zero vector. On
one hand, F(,)x 0ΠΠΠΠ = guarantees that x is a
solution of the load flow; on the other hand, the
equation F T

x x w 0(,)ΠΠΠΠ = with c wT − =1 0 , ensures

that x and the left eigenvector w of Fx correspond
to the Point of Collapse with an eigenvalue zero
and a non-zero eigenvector.

If we consider the parameter load vector as stated
in (2), system (4) can be rewritten as:

 Φ =
−

�

�

�
�
�

�

�

�
�
�

=
F

F T

(,)

(,)

x

x w

c w

0x

λ
λ

T 1

 (5)

which is a nonlinear system of equations of
dimension n N= +2 1.

To solve (5) using a distributed computing system,
a good partitioning of the electrical system is
needed. That may be obtained using any published
method [8,9] that profits from the natural
decoupling of the system. Considering a system
consisting of p processors, the resulting partition
of F()x 0= may be written as:

 F

F

F

F

p

p

p p

()

(, , ,)

(, , ,)

(, , ,)

x

x x x

x x x

x x x

0=

�

�

�
�
�
�
�

�

�

�
�
�
�
�

=

1 1 2

2 1 2

1 2

�

�

�

�

 (6)

where []x x x x= 1 2
T T

p
T T

� is the power system

state vector. For a good global convergence in a
distributed computer system, each function
Fi 1 i p(, , , ,)x x x� � should predominantly depend

on xi (no dependence on xk k i ∀ ≠ implies
perfect decoupling) [6].

Since F(,)x 0λ = is the load flow equation

including the scalar load parameter λ, we can use
the partition criteria mentioned above. Hence,
equation (5) can be rewritten as:

 Φ =

−

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

==

=

=

�

�

�

F

F

F

F

p

k

T

k
k

p

k

T

k
k

p

k
T

k
k

p

p

1

1

1

1

1

1

�

�

x

x

w

w

c w

0 (7)

where []w w w w= 1 2
T T

p
T T

� .

According to the above criteria, our partition is

such that F k ik

T

ix ∀ ≠ is relatively small compared

to Fi

T

ix . Therefore, equations Fk

T

k
k

p

ix w
=
�

1

depend

mostly on (,)x wi i . It follows that a good
assignment for processor i would be:

 Φi

i

k

T

k
k

p

F

F
i

=
�

�

�
�

�

�

�
�

=
=
� x w

0

1

 (8)

On the other hand, the last equation of (7) depends
on all w i ; making it difficult to decide a priori

where it will best be solved. Three possible
solution schemes follow.

First Scheme

The first scheme consists of assigning the last
equation of (7) to one processor, for example:

 Φ1

1

1

1

1

1

=

−

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

=
=

=

�

�

F

Fk

T

k
k

p

k
T

k
k

p

x w

c w

0

 Φi

i

k

T

k
k

p

F

F
i

i

=
�

�

�
�

�

�

�
�

= ∀ ≠
=
� x w

0

1

1 (9)

where processor 1 solves Φ1 = 0 updating

(x w1 1, , λ); while a processor i (i ≠ 1) solves

Φ i = 0 updating (,)x wi i . Convergence by this
scheme was not achieved in any of the tested
problems.

Second Scheme

In order to achieve convergence, it was decided to
assign the last equation of (7) to all processors,
such that:

 Φ i

i

k

T

k
k

p

k
T

k
k

p

F

F i
i

=

−

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

= ∀
=

=

�

�

x w

c w

0
1

1

1

 (10)

The implementation of this procedure, known as
partial overlapping [10], is illustrated in Figure 1,
where an equation with weights ωk and ωλ
selected such that

 ω ωλ + =
=
� k
k

p

1

1 (11)

is used to make sure that all λk converge to the

same solution λ∗ [5].

In Figure 1, Gi and Gj are the algorithms that

update the variables, in this case, the NR’s
method, of processors i and j respectively.

Processor i

λ ω λ ω λλ
() () ()m m

k k
m

k

p

← +
=
�

1

[]x w x wi
m T

i
m T

i
m

T

i
m m mG() () () () () ()(, ,)+ + + ←1 1 1λ λ

x wi i i, ,λ x wj j j, ,λ

Processor j

λ ω λ ω λλ
() () ()m m

k k
m

k

p

← +
=
�

1

[]x w x wj
m T

j
m T

j
m

T

j
m m mG() () () () () ()(, ,)+ + + ←1 1 1λ λ

Figure 1. Second and third schemes

Particularly, it can be shown that for p = 2 , at any
iteration m, the following equality holds:

 c w c w1 1
2

1 1

T m T m() ()+ = = const.

 c w c w2 2
2

2 2

T m T m() ()+ = = const. (12)

This imposes an additional restriction on the
possible directions of eigenvector w with respect
to the original equation (5). In fact, convergence
could not be achieved in any of the tested
problems indicated in Tables 1 and 2 using this
scheme. Therefore a third scheme, also using
partial overlapping, is proposed.

Third Scheme

To overcome the above problem, it is possible to
modify the last equation of (10) by:

 c wT + − =κλ ξ 0 (13)

where κ and ξ are constants. Equation (13) still
guarantees a non-zero eigenvector w without the
additional restriction previously mentioned.
Introducing this modification into equation (10)
yields to:

 Φ i

i

k

T

k

k

p

i
T

i
k

p

i

F

F
i

=

+ −

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

=
=

=

�

�

x w

c w

0
1

1

κλ ξ

 (14)

This third scheme can still be represented by the
diagram in Figure 1 and it gives good experimental
results, as shown in Tables 1 and 2.

4. EXPERIMENTAL RESULTS

The described schemes were implemented in a
heterogeneous network of workstations (a SUN
SPARC-Station 5 & a DEC 3000) and several
Personal Computers (PCs) using PVM (Parallel
Virtual Machine) libraries in an extended version
of ANSI C. Proposed schemes were tested in three
different implementations: sequential, parallel
synchronous and parallel asynchronous versions.
However, for reasons of shortness and for
establishing an easier comparison frame between
sequential and parallel algorithms, the
experimental results presented in this section are
limited to a distributed system of a PCs with Intel
Pentium processors of 100 MHz and 8 MB of
RAM, running under LINUX operating system.

Experimental results are presented in Tables 1 and
2 for IEEE’s 30 and 118 busbar systems,
respectively. These results were obtained for

ωλ = 0 , κ = 3, ξ = 10, []c = 1 1 1�
T
 and for

a tolerance ε = 0 05. .

The speedup is defined as:

 Sp = best sequential time

parallel method time
 (15)

As for the initial condition, the same criteria used
in the traditional sequential solution method [2]
was used for IEEE 30 busbar system. However, in
the second test problem, the IEEE 118 busbar
system, the initial condition together with the
partition method proved to be critical for
convergence. Initial estimates were selected close
to the solution with a deviation defined by:

() () ()∆z x x w w() () () ():0 0 0 0= − − −�
��

�
��

∗ ∗ ∗T T T

λ λ (16)

As for the partition criteria, the method presented
in [11] was used in all of the tested problems.

The major implementations performed were:

Sequential

Traditional solution of equation (5) using a single
processor.

Synchronous TA

Each processor solves its corresponding set of
equations (14), exchanging the updated values
after each iteration (see Figure 1); i.e. an
administrator program waits until all processors
have finished their iteration and assembles the new
set of variables broadcasting it to all processors so
they can perform another iteration until all errors
are within tolerance.

A simplified algorithm for a generic processor i
follows:

do while (no global convergence)

 wait until complete vector ()x w, ,λ is

received;
 check local convergence;
 if local convergence is not achieved

update ()x wi i i, ,λ solving Φi = 0 by NR;

 send ()x wi i i, ,λ to the administrator;

And for the administrator:

do while (no global convergence)

 wait until all ()x wk k k, ,λ are received;

 broadcast complete updated vector

()x w, ,λ to all processors;

 if all processors detect local
convergence, global convergence is
achieved;

Asynchronous TA

Each processor solves its corresponding set of
equations (14), exchanging the updated values
after each iteration, as in the method previously
described, but without blocking or interruptions.
Before starting a new iteration, the most recently
updated values of the variables received so far are
read and after finishing the iteration, each
processor broadcasts its updated variables to the
other processors. If all processors detect their
local errors within tolerance, the administrator
assembles a complete set of variables and
broadcasts it to all processors so they can perform
a convergence check with the same global possible
solution vector.

A simplified algorithm for a generic processor i
follows:

do while (no global convergence)
 if the administrator sends a complete

vector ()x w, ,λ , check for local

convergence;
 if new information is received from

processor k, update ()x wk k k, ,λ ;

 check local convergence and update

()x wi i i, ,λ solving Φi = 0 by NR;

 broadcast ()x wi i i, ,λ to all processors

k i≠ ;
 if local convergence was achieved, also

send ()x wi i i, ,λ to the administrator;

For the administrator:

do while (no global convergence)

 wait until all ()x wk k k, ,λ are received;

 broadcast complete vector ()x w, ,λ to

all processors;
 wait until all processors have checked

for local convergence. Under these
circumstances, if all processors detect
local convergence again, global
convergence is achieved;

Table 1. Experimental results for IEEE 30

Table 2. Experimental results for IEEE 118

 Note: seq. Sequential
 S Parallel, synchronous TA
 A Parallel, asynchronous TA

5. CONCLUSIONS

The present paper relates two different areas of
research: the Point of Collapse Problem in an
electrical power system, and the parallel and
distributed processing using Team Algorithms [12].

After presenting three different implementation
schemes for parallelizing the PoC method, it is
concluded that the best scheme uses partial
overlapping and reformulates the original equations.

By considering the experimental results presented in
Tables 1 and 2, it was possible to conclude that:

• The advantage of partial overlapping is

demonstrated when there exist critical equations
that can not be assigned to only one processor.

• In all of the tested problems where convergence

was achieved, the use of parallelism enables
substantial reduction in the execution time
compared to the sequential method, even in a
small problem such as the IEEE 30 (Table 1).

• The major limitation of the proposed method is

the partitioning of the system. In fact, the
partitioned system has a higher sensibility to
initial conditions and it is, in general, much
harder to converge.

• Considering the IEEE 118 system, it can be seen

in Table 2 that the asynchronous TA converged
faster than the synchronous for two and three
processors. Particularly, for p = 3 Table 2 shows
an outstanding asynchronous speedup due to a
synergetic effect [6]. For p = 4 and 5, however,
the asynchronous TA reached the solution slower
than the synchronous but still with a high
speedup.

In short, this paper presents an efficient method that
enables the solution of the Point of Collapse
Problem using an existing network of PC’s or
workstations instead of the more traditional but
expensive uniprocessor systems.

Number of
Processors

Number of
Iterations

Time
[s]

Speedup
Sp

1 7 11 1.00
2 20 7 1.57
3 42 5 2.20
4 41 4 2.75

Number of
Processors

Method Initial Condition’s
deviation ∆z()0

[%]

Number of
Iterations

Time [s] Speedup
Sp

1 seq. 1 - 5 3 161 1.00
2 S 3 5 90 1.79
 A 3 -- 79 2.04
3 S 3 23 70 2.30
 A 3 -- 19 8.47
4 S 3 19 31 5.19
 A 3 -- 38 4.24
5 S 3 17 13 12.38
 A 3 -- 16 10.06

6. ACKNOWLEDGMENTS

The authors would like to express their gratitude to
Rodrigo Ramos, Diana Benítez and Edgar Sánchez
for their valuable support.

7. REFERENCES

[1] P. Kundur and B. Gao, “Practical

Considerations in Voltage Stability
Assessment”, IV Symposium of specialists in
Electric Operational and Expansion Planning
(IV SEPOPE), Foz do Iguaçu - Brazil, May
1994.

[2] C. Cañizares and F. Alvarado, “Point of

Collapse and Continuation Methods for Large
AC/DC Systems”, IEEE Trans. on Power
System, Vol. 8, No. 1, February 1993.

[3] V. Ajjarapu and C. Christy, “The Continuation

Power Flow: A Tool for Steady State Voltage
Stability Analysis”, IEEE Trans. on Power
Systems, Vol. 7, No. 1, pp. 416-423. February
1992.

[4] F. Wu and L. Murphy, “Parallel and Distributed

Processing: Applications to Power Systems”,
IV Symposium of Specialists in Electric
Operational and Expansion Planning (IV
SEPOPE), Foz do Iguaçu - Brazil, May 1994.

[5] B. Barán, E. Kaszkurewicz, and D. M. Falcão,

“Team Algorithms in Distributed Load Flow
Computations”, IEE Proc. Gener. Transm.
Distrib., Vol. 142, No. 6, pp. 583-588,
November 1995.

[6] B. Barán, “Estudo de Algoritmos Combinados

Paralelos Assíncronos”, Doctoral Dissertation,
COPPE/UFRJ, Rio de Janeiro - Brazil, October
1993.

[7] I. Dobson and L. Lu, “New Methods for

Computing a Closest Saddle Node Bifurcation
and Worst Case Load Power Margin for
Voltage Collapse”, IEEE Trans. on Power
Systems, Vol. 8, No. 3, pp. 905-913, August
1993

[8] M. Vale, D.M. Falcao and E. Kaszkurewicz,
“Electrical Power Network Decomposition for
Parallel Computations”, IEEE International
Symposium on Circuits and Systems (ISCAS
92), San Diego - California, 1992.

[9] A. El-Keib, J. Neiplocha, H. Sing and

D. J. Maratukulam, “A Decomposed State
Estimation Technique Suitable for Parallel
Processor Implementation”, IEEE Trans. on
Power Systems, Vol. 7, No. 3, August 1993.

[10] M. Ikeda and D. Siljak, “Overlapping

Decomposition, Expansions and Contractions
of Dynamic Systems”, Large Scale System 1,
North-Holland Publishing Co., pp. 29-38, 1980.

[11] B. Barán, D. Benítez and R. Ramos, “Partición

de Sistemas de Ecuaciones para su Resolución
Distribuida”, XXII Conferencia Latino -
Americana de Informática (PANEL 96), Bogotá
- Colombia, June 1996.

[12] B. Barán, E. Kaszkurewicz and A. Bhaya,

“Distributed Asynchronous Team Algorithms:
Application to the Load Flow Problem”, XIX
Conferencia Latino - Americana de
Informática, Buenos Aires - Argentina,
September 1993.

