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ABSTRACT 
 
This paper proposes a variation of the Multiple Ant 
Colony System for Vehicle Routing Problem with Time 
Windows (MACS-VRPTW) algorithm, which is based on 
an Ant Colony System approach, using two ant colonies 
to minimize first the number of vehicles and then the total 
traveled distance. As an improvement, the present work 
proposes to use a modified version specialized for a 
multiobjective context, using just one colony to get a set 
of Pareto optimal solutions considering three objectives at 
the same time, the number of vehicles, the total traveling 
time and the total delivery time. Experimental results 
validate the new approach with very good results when 
compared to the original MACS-VRPTW. 
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Multiobjective optimization, Ant Colony Optimization, 
Vehicle Routing Problem with Time Windows, Pareto 
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1. INTRODUCTION 
 
The Vehicle Routing Problem with Time Windows 
(VRPTW) [1] is an extension of the Vehicle Routing 
Problem (VRP) [2], in which the aim is to find a set of 
minimum-cost vehicle routes, that originates and 
terminates at a central depot, for a fleet of vehicles that 
serve a given set of customers with known demand. Each 
customer is served exactly once and all the customers 
must be assigned to vehicles without exceeding vehicle 
capacities. VRPTW added to these issues the complexity 
of allowable delivery times, or time windows. With the 
time windows, the total routing and scheduling cost 
include not only the total travel distance and time costs, 
but also the cost of waiting time incurred when a vehicle 
arrives too early at a customer location. The service 
beginning time at each customer must be greater than or 
equal to the beginning of the time window, and the arrival 
time at each customer must be lower than or equal to the 
end of the time window. If a vehicle arrives to a customer 
before the beginning of the time window, it has to wait 
until this time to serve the customer. 

 
The spatial problem of routing vehicles has been 
extensively studied in the literature. Several approaches 
have been published dealing with it, using parallel 
implementations [3], hybrid strategies coupling local 
search method to evolutionary algorithm [4], neuronal 
network [5, 6], a heuristic that uses pheromone 
information [7], and works that deal with this problem 
using evolutionary calculation to optimize the demand for 
each vehicle besides the optimization of the vehicle 
number and the total traveling time [8]. 
 
More recently, the time window constraint has been 
considered and many approaches have been presented to 
solve the VRPTW: parallel algorithms with a polynomial 
number of processor [9], genetic algorithm [10, 11, 12, 
13], and parallel simulated annealing [14, 15]. 
 
In this context, MACS-VRPTW [16] was developed as an 
evolutionary proposal based on Ant Colony System 
(ACS), and more generally, on Ant Colony Optimization 
(ACO), with the aim of optimizing two objective 
functions, as summarized in section 3. In fact, ACO is a 
metaheuristic approach that imitates ants’ behavior, where 
ants cooperate in their search for food by depositing 
chemical traces (pheromones). In a computational 
implementation, ants that found good solutions deposit 
pheromones in their paths. That way, ants of the following 
generations may decide with good probability to follow a 
good trace with greater quantity of pheromones. 
 
This paper is concerned with solution construction for the 
VRPTW using ACS. The approach presented may be 
considered an extension of the MACS-VRPTW algorithm 
for a truly multiobjective context. The novelty of the 
presented approach consists in incorporating the Pareto 
optimal concept in such a way that the final solution is not 
a single optimum but a whole set of Pareto optimal 
solutions where all objectives are equally considered, i.e., 
a set of solutions where no solution can be improved in 
any objective without damaging other objectives [17]. 
 
The rest of this work is organized as follows: section 2 
formalizes the problem, section 3 introduces the MACS-
VRPTW while its improved version is presented in 
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section 4. Section 5 presents performance metrics used for 
comparison; while section 6 presents experimental results, 
with conclusions left for section 7. 
 
 
2. THE PROBLEM 
 
The Vehicle Routing Problem (VRP) with Time 
Windows, also known as VRPTW, is an extension of 
VRP that may be mathematically stated as: 
 
 Minimize an objective function F 
given: 
C = {c0, c1, c2, …, cñ}, … that represents the set of ñ 

customers, where c0 represents the depot and ci a 
customer i; 

tij … traveling time between ci and cj    (tij = tji); 
Q ... total capacity of a vehicle (assumed homogeneous); 
qi … demand of customer ci where qi ≤ Q and q0 = 0; 
 [bi, ei]… acceptable time window for customer ci, with bi 

as the earliest and ei as the latest time to serve ci. 
 
In a traditional VRPTW problem, a single objective 
function F may be chosen from any of the following ones: 
 
Number of vehicles 
 

F1 = ν (1)
 

where ν represents the total number of vehicles. 
 
Total traveling time (without considering waiting times) 
 

F2 = Σ tij    ∀ tij ∈ ψ (2)

 
where ψ represents a complete solution (or tour) 
 
Total delivery time (considering waiting times) 
 

F3 =  ∑
=

ν

1i
iT (3)

 

where Ti represents the time needed by vehicle  i  to return 
to the depot c0 considering the waiting time needed at 
each customer when it arrives before the beginning of the 
time window. 
 
For the multiobjective context of the present work, the 
objective function F is considered as a three-dimensional 
vector, i.e.: 

F = [F1  F2  F3]T 
with no objective considered more important than the 
others. 
 
 
3. MACS-VRPTW REVIEW 
 
MACS-VRPTW has been designed to solve the vehicle 
routing problems with time windows using an ant colony 
system [16]. This approach uses two different ant colonies 

to minimize two objective functions. The first colony, 
denoted as ACS-VEI, minimizes the number of vehicles 
(F1), while the second colony, denoted as ACS-TIME, 
minimizes the total traveling time (F2). In this original 
approach, the first objective takes precedence over the 
second. 
 
Both colonies use independent pheromone trails and 
collaborate sharing a global best solution, which is used 
for pheromone updating. Given a feasible solution ψ with 
ν vehicles, the MACS-VRPTW decreases one vehicle at a 
time, trying to find a feasible solution with (v-1) vehicles, 
using its first ant colony (ACS-VEI) and a heuristic that 
maximize the number of visited customers with each 
vehicle. At the same time, the second colony (ACS-
TIME) tries to minimize the total traveling time with the 
given number of vehicle (v) of the global best solution ψ. 
When the first colony ACS-VEI finds a new solution with 
a fewer number of vehicle, both colonies are reinitialized 
and the older solution with a larger number of vehicles is 
forgotten, i.e., only one global solution is kept at a time. 
The pseudocode below shows this approach. 
 
Pseudocode MACS-VRPTW 
1. /* Initialization */ 

/* ψgb is the best feasible solution: lowest number of 
vehicles and shortest traveling time. 
#active_vehicles (ψ) computes the number of active 
vehicles in the feasible solution ψ */ 

ψgb I feasible initial solution with unlimited number 
of vehicles calculated with a nearest neighbor 
heuristic. 

2. /* Main loop */ 
Repeat 
 v I #active_vehicles(ψgb ) 
 Activate ACS-VEI(v - 1) 
 Activate ACS-TIME(v) 
 while ACS-VEI and ACS-TIME are active 
 wait for an improved solution ψ from ACS-

VEI or ACS-TIME 
 ψgb I ψ 
 if #active_vehicles(ψgb ) < v then 
 reinitialize ACS-TIME and ACS-VEI 
 end while 
until a stopping criterion is met. 
 
To construct a solution, the depot is duplicated a number 
of times equal to the number of available vehicles, and the 
distances between copies of the depots are set to zero. 
Each artificial ant starts from a randomly chosen copy of 
the depot and, at each step, moves to a not yet visited 
node that does not violate neither the time window 
constraints nor the vehicle capacity. The set of available 
customers also includes not yet visited duplicated depots. 
A feasible solution ψ  is represented in Figure 1. 
 
It should be noted that in general, the original MACS-
VRPTW algorithm only finds one optimal solution with 
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the minimum v. It does not find a Pareto set of optimal 
solutions; therefore, it may not be considered a truly 
general multiobjective optimization algorithm [17]. 
Consequently, to compute a whole set of Pareto solutions, 
the original proposal was slightly modified to store all 
Pareto optimal solutions instead of erasing good solutions 
when a new one with fewer number of vehicles is found. 
 
Considering that the original MACS-VRPTW was not 
designed for a truly multiobjective context, the following 
section presents a new approach that considers the 
multiobjective nature of the problem stated in section 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Feasible solution  
with four duplica
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be found [18]. 
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generation, each ant k (of a
feasible solution, starting 
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k where s
is in node ci. Νi

k  is cal
includes all nodes not yet 

any constraint (as time window and vehicle capacity). 
This set Νi

k does not include depots. When a vehicle can 
not add more nodes, a depot is included, and another 
vehicle starts adding nodes in the same way. This process 
is repeated until all nodes have been visited and, 
therefore, a feasible solution ψ was found. 
 
An ant k moves from node ci to node cj using heuristic as 
well as pheromone information. The heuristic information 
is given by the visibility, while the pheromone 
information, denoted by τ(i,j), indicates how well seems 
to visit customer cj after ci considering the solutions 
already found. 

 

d

d4 d  

 
To choose the next node cj to be visited by an ant k in ci a 
probability pk(i,j) is assigned to each city and the next city 
cj is chosen in Νi

k  by the following procedure: 
 

Procedure Choose-Next-Node 
d1

d1
for a vehicle routing problem 
ted depot, i.e.  v = 4. 

CTIVE APPROACH 

ultiobjective vehicle routing 
s that simultaneously optimize 
s presented in section 2, i.e.: 
hicles, 
 time, and 

 time. 

the original MACS-VRPTW 
 the objectives with the same 
e has any precedence over the 
areto optimal solutions P may 

h uses an unique ant colony to 
all three functions. All 

heromone trails. Therefore, the 
ons is equally important for 
the Pareto front. 

 is to construct only feasible 
vehicles as needed. In every 
 set of m ants) constructs one 

at the depot and successively 
customer cj, from the set of 
ubindex i represents that ant k 
culated at each node ci, and 
visited and that do not violate 

3 

2

Randomly choose to do exploration with probability q0 
or exploitation otherwise; 
if exploitation 
 Choose the city with larger pk(i,j)  
else (exploration) 

Randomly choose cj using probabilities  pk(i,j) 
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λ = k/m, and β  weights the relative importance of the 
objectives with respect to the pheromone trail, given by τ. 
 
The visibility for the objective function F2 considering  
traveling time is calculated as: 

ηJ(i,j) = 1 / tij (5)
 
while the visibility for objective function F3 is related to 
the waiting time and the width of the time windows. It is 
calculated as: 
 ctj = max(cti + tij; bj) 
 ∆tij = ctj – cti 
 dij = ∆tij . (ej – cti) 
 dij = max(1, dij) 
 ηL(i,j) = 1 / dij 

(6)

 
with ctj representing the current time at node j (or delivery 
time to cj). Each vehicle begins its trip at a depot c0 with 
ct0 = 0. 
 
When each ant k finds a complete solution ψk, it is 
compared to the Pareto optimal set P to check if it is non-
dominated (worse solutions are dominated). If it is a new 
optimal Pareto solution, it is included in P and dominated 
solutions from P are erased. At the end of each 
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generation, τ0’ is calculated with the average values of the 
Pareto optimal set as follows: 

 /* Calculate τ0’ according to (7)*/ 
 PP JLn ψψτ ../1'=0   

PP JLn ψψτ ../1'=0  (7)  if τ0’ > τ0 

  /* A better Pareto set P was found */    τ0 I τ0’ where : 
  Re-initialize trails {τ} with τ0 

n… Pvψ + ñ (customers) is the average number of 
nodes; 

 else 
  for each ψP∈ P do 
     /* perform global updating according to (8) */ Pvψ … is the average vehicle number;      τ(i,j) = (1 - ρ) . τ(i,j) + ρ  / Lψ

P.Jψ
P   ∀ (i,j)∈ ψP 

  end for PLψ … is the average delivery time; 
 end if 

PJψ … is the average total time. until a stopping criterion is met. 
 If τ0’ > τ0  because the Pareto set P was improved, the 

pheromone trail is reinitialized with the new value τ0’ to 
improve exploration; otherwise, exploitation is favored by 
globally updating the pheromone trail with each solution 
of the current Pareto optimal set P, using the following 
equation: 

Procedure build_tour(k) 
/* Initialization */ 
 Put ant k at depot 0 (<i>) 
 ψk I  <i> 
 ctk I 0, loadk I 0 
/* The ant builds its tour. Tour is stored in ψk */  
repeat τ(i,j) = (1 - ρ).τ(i,j) + ρ / (Lψ

P.Jψ
P)     (i,j) ∈  ψ∀ P. (8)

/* Starting from node i compute the set Νi
k of feasible  

nodes*/ 
 

where Lψ
P is the value of F3  for a given solution ψ used 

to update τ(i,j) while Jψ
P is the corresponding value of F2.  compute Νi

k 

  if Νi
k = { } /* no  feasible nodes */ 

The re-initialization of τ(i,j) forces the ants to explore 
new ways, without the probably wrong information that 
has been introduced by solutions that were already erased 
from P because they were dominated by new ones. This 
exploration is powered by an evaporation process that 
occurs when an ant moves from node i to node j. In this 
case, τ(i,j) is updated according to: 

  ctk I 0 
  loadk I 0 
  ψk I <i> 
 else 
  /* ∀ j∈  Νi

k compute visibility */ 
  for every j ∈ Νi

k  do   
   Compute ηJ(i,j)  using equation (5)  

τ(i,j) = (1 - ρ) . τ(i,j) + ρ . τ0. (9)    Compute ηL(i,j)  using equation (6) 
 

  end for where τ0 is initially calculated, in a similar way of 
equation (7), according to:    <j> I Choose-Next-Node 

  ψk I ψk  <j> ∪ τ0 = 1 / (n . Lψ
h . Jψ

h) 
  ctk I max(cti + tij; bj) with Lψ

h representing an initial estimation of the total 
delivery time (F3), while Jψ

h represents an initial 
estimation of the total traveling time (F2), and n is the 
initial number of nodes (depots + customers). The 
pseudocode for the new proposal denoted as MOACS-
VRPTW (Multi-Objective Ant Colony System for the 
Vehicle Routing Problem with Time Windows) follows: 

  loadk I loadk   q∪ j 

  /* Pheromone updating using equation (9) */ 
  τ(i,j) = (1 - ρ) . τ(i,j) + ρ . τ0 

  i I j 
 end if 
until all customers have been visited. 
  
 Pseudocode MOACS-VRPTW 
5. PERFORMANCE METRICS /* Initialization */ 

 ψh
 I feasible initial solution  

 τ0 = 1 / n.Jψ
h. Lψ

h To evaluate experimental results using the two versions 
described in the preceding sections, an appropriate test 
suit of metrics was chosen from [17], considering that no 
single metric can entirely capture performance, 
effectiveness and efficiency for multiobjective 
evolutionary algorithms. The suit comprises the following 
metrics: 

Repeat /* Main Loop */ 
 for each ant k ∈ {1,…, m} do 
 /* Construct a solution  (ψk) */ 
 ψk = build_tour(k) 
 if ψk ∈  P  
 save ψk and erase dominated solution from P   end if 
 end for 
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1) Overall Non-dominated Vector Generation (ONVG): 
simply counts the number of solutions in the 
calculated Pareto Front, denoted as Yknown 

 

cknownYONVG ||
∆

=  
(10) 

 

where 
c
 denotes cardinality. The larger the value of the 

ONVG, the better for knowing Pareto Front details. 
 
2) Overall True Non-dominated Vector Generation 

(OTNVG): counts the number of solutions in Yknown 
that are also in the True Pareto optimal Front denoted 
as Ytrue. Because Ytrue is not known in theory, it may 
be estimated running several different evolutionary 
algorithms for a large number of times, for the same 
problem, choosing the optimal Pareto solutions found 
in all the experiments. For a good approximation of 
Ytrue a large number of running using as many 
algorithms as possible are needed. Clearly, the larger 
is the OTNVG, the better is a solution set Yknown. 

 

{ }
ctrueknown YyYyyOTNVG ∈∧∈=

∆

 (11) 

 
3) Overall Non-dominated Vector Generation Ratio 

(ONVGR): denotes the ratio between the number of 
solutions in Yknown to the number of solutions in Ytrue. 
Ideally, a good solution should have a value close to 
1. 

 

ctrueY
ONVGONVGR

||

∆

=  (12) 

 
4) Error Ratio (E) 
 

ONVG
e

E
N

i i∑ =
∆

= 1  
(13) 

 

where N is the total number of solutions yi found in a run, 
while ei is 0 if  yi ∈ Ytrue and 1 otherwise. This ratio 
reports the proportion of objective vectors in Yknown that 
are not members of Ytrue. Of course, a small value is 
preferred. 
 
 
6. EXPERIMENTAL RESULTS 
 
The two algorithms described above were implemented in 
a standard personal computer under a UNIX operating 
system using C language. For simplicity, results will be 
presented for only one set of data, published in [1], where 
it is identified as “C101.” The experiments reported in 
this work were performed with the following parameters: 
m = 10 ant, q0 = 0.9, β = 1 and ρ = 0.1. 
 
To build the True Pareto-optimal Front Ytrue both 
algorithms were running 200 times, as well as other tested 
algorithms. All found solutions were stored and from all 

those candidate solutions the dominated ones were erased, 
taking only non-dominated solutions to conform Ytrue.  
 
To compare both algorithms, the Pareto-optimal Front 
Yknown of each algorithm was built with the 20 best 
runnings of each one, and the dominated solutions of each 
set were erased. The performance metrics were calculated 
for every run of each algorithm and their average values 
are presented in Table 1, where it is easy to note that the 
new approach outperforms the original MACS-VRPTW 
in every studied metric. 
 

Table 1. Average metric values for the best 20 runs 
of 200 runnings of both algorithms: the MACS-VRPTW 

and the New Approach 
ONVG OTNVG ONVGR E 

Macs New Macs New Macs New Macs New
9.75 15.85 0 1.1 0.26 0.42 1.00 0.93

 

Figure 2 presents three Pareto Fronts for ν = 10 vehicles, 
one for Ytrue and one for each Yknown of both compared 
algorithms, considering only 20 runs. It can be seen that 
the Yknown found for the new approach is a lot closer to 
Ytrue  than the one calculated for the MACS-VRPTW. 
Even more, the whole Ytrue is better approximated by the 
Yknown of the new approach because the Yknown of the 
MACS-VRPTW does not contain good solutions when 
considering F2 and does not have enough solutions in Ytrue 
or very close to it. 
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Fig. 2. Comparative Pareto Fronts. The hyphen represents 

solutions in Ytrue; the crosses solutions in Yknown for the 
new approach; while the circles represent solutions found 

with the MACS-VRPTW. 
 

Although good solutions with more than 10 vehicles were 
found, these solutions are not presented in Figure 2 
because 2-D graphics are easier to understand, and most 
solutions use v = 10 vehicles. 
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Similar results as the ones presented in Table 1 and Figure 
2 were obtained for other values of the parameters (m, q0, 
β and ρ) and other test VRPTW problems presented in 
[1].  In particular, the proposed algorithm found a good 
number of solutions with fewer vehicles v and shorter 
Total delivery time for several test problems of [1], as 
“C1-10-1”, “C1-10-2”, “C1-2-1” and “RC2-2-1”. 
 
In summary, experimental results prove that the new 
approach outperforms the MACS-VRPTW in the new 
context of a truly multiobjective problem, using the three 
simultaneous objective functions presented in section 2. 
 
 
7. CONCLUSION 
 
The present work modifies the MACS-VRPTW algorithm 
to propose, for the first time, a truly multiobjective 
version of the Ant Colony System for the VRPTW 
problem with three equally important objective functions, 
finding a whole set of Pareto optimal solutions, as shown 
in Figure 2. 
 
Experimental results prove this new approach clearly 
outperforms the original MACS-VRPTW algorithm in 
this new multiobjective context. Moreover, the ideas 
presented in this work can be easily extended to other 
objectives and even to different multiobjective problems 
using the same concept of different visibilities for each 
objective, saving the found information of good solutions 
in a unique pheromone matrix. This way, it naturally 
combines the best solutions found so far, trying to 
discover new Pareto optimal solutions. 
 
Given the promissory experimental results found so far, 
the authors are working on a parallel version of the 
proposed algorithm for a network of personal computers, 
using PVM (Parallel Virtual Machine), aiming to solve 
larger problems in reasonable time. 
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