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Abstract. Multicast routing problem in computer networks, with more than one
objective to consider, like cost and delay, is usually treated as a mono-objective
Optimization Problem, where the cost of the tree is minimized subject to a
priori restrictions on the delays from the source to each destination. This paper
presents a new multicast algorithm based on the Strength Pareto Evolutionary
Algorithm (SPEA), which simultaneously optimizes the cost of the tree, the
maximum end-to-end delay and the average delay from the source node to each
destination node. Simulation results show that the proposed algorithm is able to
find Pareto optimal solutions. In addition, they show that for the problem of
minimum cost with constrained end-to-end delay, the proposed algorithm
provides better solutions than other well-known alternatives as Shortest Path
and KPP algorithms.

1 Introduction

Multicast consists of concurrent data transmission from a source to a subset of all
possible destinations in a computer network [1]. In recent years, multicast routing
algorithms have become more important due the increased use of new point to
multipoint applications, such as radio and TV transmission, on-demand video,
teleconferences and e-learning. Such applications have an important quality-of-
services (QoS) parameter, which is the end-to-end delay along the individual paths
from the source to each destination. Another important consideration in multicast
routing is the cost tree. It is given by the sum of the costs of its links. Most algorithms
dealing with cost of a tree and delay from source to each destination, address
multicast routing as a mono-objective optimization problem, minimizing the cost
subjected to an end-to-end delay restriction. In [2], Kompella et al. present an
algorithm (KPP) based on dynamic programming that minimizes the cost of the tree
with a bounded end-to-end delay. For the same problem, Ravikumar et al. [3] present
a method based on a simple genetic algorithm. This work was improved in turn by
Zhengying et al. [4] and Araujo et al. [5]. The main disadvantage with this approach
is the necessity of an a priory upper bound for the delay that may discard solutions of
very low cost with a delay only slightly larger than a predefined upper bound. In
contrast to the mono-objective algorithms, a MultiObjective Evolutionary Algorithm



(MOEA) simultaneously optimizes several objective functions; therefore, they can
consider end-to-end delay as a new objective function. Multiobjective Evolutionary
Algorithms provide a way to solve a multiobjective problem (MOP), finding a whole
set of Pareto solutions in only one run [6]. This paper presents a new approach to
solve the multicast routing problem based on a MOEA called the Strength Pareto
Evolutionary Algorithm (SPEA) [6].

The remainder of this paper is organized as follow. A general definition of a
multiobjective optimization problem is presented in Section 2. The problem
formulation and the objective functions are given in Section 3. The proposed
algorithm is explained in Section 4. Experimental results are shown in Section 5.
Finally, the conclusions are presented in Section 6.

2 Multiobjective Optimization Problem

A general Multiobjective Optimization Problem (MOP) includes a set of n decision
variables, k£ objective functions, and m restrictions. Objective functions and
restrictions are functions of decision variables. This can be expressed as:

Optimize 'y =f(x) = (fi(x), f2(x), ..., fl(X))

Subject to  e(x) = (e1(X), ex(X), ... ,em(X)) =0

where x = (xy, X, ..., X;) € X is the decision vector, and y = (y1, y2, ... , ¥x) € Y s
the objective vector. X denotes the decision space while the objective space is
denoted by Y. The set of restrictions e(x) = 0 determines the set of feasible solutions
X and its corresponding set of objective vectors Yy. The problem consists of finding x
that optimizes f(x). In general, there is no unique “best” solution but a set of solutions.
Thus, a new concept of optimality is established for MOPs. Given u, vE X,

fu)=f(v) iff Vie {1,2,..k}: fi(w)=fi(v);

f(u) < f(v) iff Vie {1,2,...k}: fi(u) <fi(v);

f(u)<f(v) iff f(u)<f(v)A f(u)=f(v).

Then, they comply with one of three conditions: u dominates v iff f(u)<f(v); u and v
are non-comparable iff f(u)1f(v) A f(v)[1f(u); and v dominates u iff f(v)<f(u). uldv
will denote that u dominates or is equal to v. A decision vector xe Xy is non-
dominated with respect to a set V C Xy iff: x dominates v or they are non-

comparables, V ve V. The set Xque={Xx e X; | X is non-dominated with respect to Xy}
is known as Optimal Pareto set, while the corresponding set of objective vectors
constitutes the Optimal Pareto Front.

3 Problem Formulation

For this work, a network is modeled as a direct graph G = (V, E), where V' is the set of
nodes and £ is the set of links. Let (i, j) € £ be the link from node i to node j. For each
link (i), let c¢; and dj its cost and delay. Let seV denote a source and
N <V —{s} denote a set of destination nodes of a multicast group. Let 7(s,N) represent
a multicast tree with s as source node and N as destination set. At the same time, let



pr(s,n) a subset of T(s,N) that connects the source node s with a ne N . The

multicast routing problem may be stated as a MOP that tries to find a tree minimizing:
I-maximum delay (D,,); 2-cost of the tree (C); 3- average delay (D,):

_ Max { zd,}} M)
(i.j)epr(s.n)
C= Zc[/ . (2)

(@i,j)eT

z{ zdu} ®
neN| (i,j)epr(s.n)

Example 1. Given multicast group shown in Figure 1, a tree with an end-to-end delay
less than 40 ms is a priori chosen. (a) shows the Shortest Path Tree (SPT). (b) shows
the tree constructed with KPP [3], that minimizes C subject to the bound delay of
40ms. (c) shows a tree that would not be found by KPP or other algorithms based on
restrictions if an a priori restriction of 40 ms were given. This alternative may be a
good option since it has lower cost and a bound delay only slightly larger than the
predefined bound. Note also that alternatives are non-dominated solutions.
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(a) D,=272, D, 740, C=31
D=168, D,=23, C=40

Fig. 1. National Science Foundation (NSF) Net. Each link with its delay and cost assigned

It is important to note from the mathematical formulation that the three objective
functions are treated independently and should be minimized simultaneously.
Therefore, a whole optimal solution set is provided in one run.

4  Proposed algorithm

The proposed algorithm holds an evolutionary population P and a Pareto set P,,.
Starting with a random population P, individuals evolve to optimal solutions, and
these are included in P,,. The algorithm, shown in Figure 2(a), is explained briefly.
Construct routing tables. Let N = {n;, n,, ..., njy}. For each n;eN, a routing table is
built. It consists of the R shortest and R cheapest paths. R is a parameter of the
algorithm. Yen’s algorithm [9] was used for this task. A chromosome is represented
by a string of length |N| in which the element (gene) g; represents a path between s
and n;. The relation between a chromosome, genes and routing tables is shown in
Figure 2(b). The chromosome represents the tree in the same Figure.
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Fig. 2. (a) Proposed algorithm. (b) Relation between the chromosome, genes and routing tables

Discard. In P, there may be duplicated chromosomes. Applying genetic operations
like crossover on two of them will yield the same chromosome. Therefore, the
searching ability could be reduced. Duplicated chromosomes are replaced by news
randomly generated [8].

Evaluate P. Evaluate P computes the objective vector of each individual in P, using
the objective functions defined in Section 3.

Update non-dominated set P,, Each non-dominated individuals of P is compared
with the individuals in P,,. If that in P is not dominated by anyone of P, then it is
copied to P,,. Besides, if an individual in P,; is dominated by someone in P, it is
removed from the external set.

Compute fitness. Fitness is computed using the SPEA procedure [6].

Selection. The selection operator is applied on each generation over the union set of
P, and P, to select good individuals to generate the next population P. The roulette
procedure has been implemented as a selection operator [7].

Crossover and mutation. The two-point crossover operator is applied over each
selected pair of individuals. Then, some genes in each chromosome of the new
population are changed (mutated) with probability P, [7].

5 Results

The algorithm has been tested in different network topologies. Firstly, simulation
experiments for the Example 1, labeled as P1, were performed. Besides, two test
problems from [5] were used. They were labeled as P2 and P3. The parameters of the
proposed algorithm were set to |P|=100, P,,~0.3 and R = 25. An exhaustive search
method, which finds the Pareto optimal solutions, was used to compare the results.
This algorithm simply calculates all possible chromosomes and picks up the non-
dominated individuals. The run time was approximately 3 hours for P1 and 10
minutes for P2 and P3. For each of the problems, 50 runs were done using the
proposed algorithm with |P|=50, P,,,~0.3 and R=25. The runs were stop when no new
non-dominated solution was found for 250 successive generations.
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Fig. 3. Test problems P2 and P3



Table 1 presents the average (¢,) and maximum (#,,) running time in ms; the
number of theoretical optimal solutions (S); the minimum (SF,,;,), maximum (SF )
and average (SF,) number of theoretical optimal solutions found in a run. Note that
even in the worst case the 66% of the theoretical Pareto set was found (4/6 for P3).
Furthermore, the lower ratio SF,/S was at least 0.857 (6/7, for P2).

Table 1. Results of problems P1, P2 and P3

tu tmax S SFmin SFmax SFu
P1 210 215 8 7 8] 7.8
P2 350 390 7 5 7 6
P3 350 380 6 4 6| 5.2

Besides the above test problems, the proposed algorithm was compared against the
SPT and KPP [2] to find the minimum cost tree subject to an end-to-end delay
restriction. The proposed algorithm was tested using the NSF Net. In order to measure
the performance of the algorithm, average normalized cost and delay were computed:

)ZY:( - w) YPI" (5)

i=1

Y
=(1/7) z(c;, Chus)/ Chnsr @
v =17y

where
Y : Number of runs with the same bound delay and size of multicast group.
C;{ : Cost of the tree using H (H=SPT or H=KPP) on run i.

Ci,, - Cost of the tree using the proposed Multicast Multiobjective Algorithm (MMA) on run i.
D;, : Average delay of the tree using H (H=MMA or H=KPP) on run i.
Dips Average delay of the SPT.

One hundred runs for each of four different multicast group sizes and for each of
four different bound delays were done. Thus, 1600 runs with different multicast
groups were tested. Costs of the links were generated at random and uniformly from
the set {3, 4, ..., 10} for each run. MMA was set to |P|=100, P,,,~0.3 and R= 30. The
runs stopped when no new non-dominated solutions were found for 100 generations.
Given that MMA provides more than one solution, the one showing the minimum cost
subject to the end-to-end delay restriction was picked out. Figure 4 summarize the
results. They show that MMA constructs lower cost trees than KPP and SPT. The
normalized SPT costs are between 10 and 30 %, while those of KPP are between 2
and 5 %. The effect of increasing the bound delay is clear: KPP and MMA increase
their average delay compared against SPT, while the cost of their trees are lower. This
implies a notorious tradeoff between both metrics. Clearly an approach that can find
Pareto solutions is much more suitable for this type of problems.

6 Conclusions
This paper presents a new multiobjective approach to solve the multicast routing

problem. To solve this problem, a multiobjective multicast routing algorithm was
proposed. This algorithm optimizes simultaneously three objective functions: 1-



maximum end-to-end delay, 2- cost of a tree, 3- average delay. The proposed
evolutionary algorithm has a purely multiobjective approach, based on SPEA. This
approach calculates not only one solution, but also an optimal Pareto set of solutions,
in only one run. This last feature is of special importance, since the most adequate
solution for each particular case can be chosen without a priori restrictions.

The proposed algorithm was evaluated with three test problems. Even in the worst
case, it was able to find the 66% of the real Pareto set. Next, the proposed algorithm
was compared against SPT and KPP to solve the problem of minimum cost tree
subject to end-to-end delay restriction. Besides constructing the lowest cost tree, the
proposed algorithm produces solutions with lower average delay than KPP in several
cases (this is, cheaper trees with lower average delay), proving it is able to find better
solutions including several theoretical Pareto optimal ones.

As future work, we will consider other objective functions as maximum link
utilization and larger networks.
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Fig. 4. Normalized cost and average delay



