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ABSTRACT

This paper proposes a new paralel asynchronous version of the Strength Pareto Evolutionary Algorithm (SPEA)
implemented over a network of inexpensive personal computers. The objective of the implementation is the optimal
design of communication networks in the presence of multiple and even conflicting objectives. It tries to find the best
topologies for the network, given the location of the Communication Centres (nodes), and the cost and reliability of the
potential links between them. The proposed tool provides the system designer with a complete set of valid solutions,
easing the process of decision making. In this set, known as the Pareto optimal set, al solutions are feasible and no
solution isthe best, if al objectives are being considered. Experimental results validate the suggested approach.

Keywords: multiobjective optimisation, network design, asynchronous parallel multiobjective evolutionary algorithms.

RESUMEN

Este trabajo propone una innovadora version paralela asincrona del Strength Pareto Evolutionary Algorithm (SPEA),
implementada sobre una red de computadoras personales de bajo costo. El objetivo de la implementacion es el disefio
optimo de redes de computadoras en presencia de multiples objetivos que incluso pueden estar en conflicto entre si. Se
trata de obtener las mejores topologias posibles para la red, dada la ubicacién de los centros de comunicacion (nodos), y
el costo y confiabilidad de los enlaces potenciales entre ellos. La herramienta propuesta provee a disefiador de sistemas
de un completo conjunto de soluciones validas asistiendo a proceso de toma de decisiones. En este conjunto, conocido
como conjunto Pareto optimo, todas las soluciones son factibles y ninguna puede considerarse mejor a las demas s se
toman en cuenta todos |os objetivos. Resultados experimentales demuestran la validez de la propuesta sugerida.

Palabras claves: optimizacion multiobjetivo, disefio de redes, algoritmos evolutivos paralelos asincronos.



1 INTRODUCTION

The design of communication networks is a typical problem from the field of operational research. Clearly, it can be
classified as a multiobjective problem. The objective of the designer is to optimise a set of conflicting objectives:
reliability, cost, delays, throughput, capacity, etc, while maintaining restrictions over another set of requirements:
minimum reliability, maximum cost, maximum acceptable delay, minimum speed, etc. This problem is known to be NP-
Hard [2].

Many approaches have been designed to address this problem, some of them based on various kinds of graph
perturbation heuristics [14, 1], and others founded in techniques from artificial intelligence (tabu search [12], simulated
annealing [13] and genetic algorithms [5, 6, 10, 9]). An interesting summary of these methods can be found in [9]. To
shorten the discussion it is useful to say that:

a) none of them treats the problem as a multiobjective problem, but they would rather choose an objective to
optimise, leaving the others as restrictions;

b) all of them can be applied only to networks of restrained magnitude, and in very restricted situations. As the size
of commercial systems grows there is a complete lack of tools to aid in the designing process; and the
methodology of trial & error that has been applied is neither effective nor efficient.

In the present work we propose an implementation of two versions of the Strength Pareto Evolutionary Algorithm
(SPEA) [16], (a sequential and a parallel one), and we examine and contrast the results obtained with both. We have
chosen the SPEA because it implements elitism through the maintenance of an external population of best solutions
found during the whole generational loop; then, convergence is guaranteed [15].

The rest of this work is organised in the following way: section 2 presents a very concise outline of the theory of
multiobjective optimisation. Section 3 introduces the problem to be solved with its restrictions and generalities. Section
4 discusses the test problem. Section 5 and 6 contain descriptions of the implementations (sequential and parallel
version, respectively). Section 7 includes performance metrics used for the testing procedure. Section 8 presents
experimental results. And, finally, section 9 emits some conclusions and directions for further work.

2 MULTIOBJECTIVE OPTIMISATION PROBLEMS

Multiobjective optimisation can be applied to a wide range of problems. In particular we consider the problem of the
backbone design of a computer network. One of the key objectives of the designer is to minimise total costs, while
another one is to maximise reliability. Depending on the type of normal traffic, other objectives can be minimise delays,
maximise throughput, etc. Every objective can be expressed explicitly as an objective to optimise or can be included as a
restriction for the optimisation process. Considering this fact a multiobjective problem can be defined as follows.
Multiobjective Optimisation Problem (MOP). A general MOP includes a set of n parameters (decision variables), a set
of k objective functions, and a set of m restrictions. Objective functions and restrictions are functions of decision
variables. This can be expressed as:

Optimise y =1(x) = (f,(x), £,(x), ..., T(x))
subject to ex) =(e(x), e(x), ...,e(x)) = 0
where X=X, Xy . s X) € X (1)

Y=V Yy aY) €Y

and where x is the decision vector and y is the objective vector. X denotes the decision space and the objective space is
denoted by Y. Depending on the problem at hand “Optimise” could mean minimise or maximise.

The set of restrictions e(x) = 0 determines the set of feasible solutions X, and its corresponding set of feasible objective
vectors ..

From this definition it follows that every solution for the problem consists of an-tuple x = (x, X,, ... , X)), that yields the
objective vector y = (f,(X), f,(x), ... , (X)), where every x must comply with the set of restrictions e(x). The optimisation
problem consists in finding the x that has the “best” f(x). In general, there is not one “best” solution, but a set of
solutions, none of which can be considered better than others if all objectives are considered at the same time. This
derives from the fact that there could be —and mostly there are— conflicts between the different objectives that compose
the problem. Thus a new concept of optimality should be established for MOPs.

In common mono-objective optimisation problems the set of feasible decision variables is completely ordered by the
objective function f. The goal is simply to find the value —or set of values— that lead to the optimal values of f. In
contrast, in multiobjective optimisation the feasible decision vector set is partialy ordered (i.e. there exist a decision
vector a and a decision vector b and f(a) cannot be considered better than f(b), neither f(b) is better than f(a). Then,
mathematically the relations=, < and = should be extended. This could be done in the following way:



Given two decision vectorsu € X andv € X
f(uy=f(v)ifandonly if Vie {1,2,..,k}: f(u)=1(v)
f(u) > f(v)if andonly if Vie {1,2, ..., K}: f(u)= () 2
f(u) > f(v) if and only if f(u) = f(v) A f(u) # (V)

Therelations < and < could be defined in similar ways.

Then, given two decision vectors of a MOP, x, and x, they comply to one of three conditions: either f(x,) > f(x,), or f(x,)

> f(x,), or f(x,) # f(x,) A f(x,) # f(x,). And thisis expressed with the following symbols.
Par eto Dominance. Given two objective vectorsay b,

a > b (a dominates b) if and only if a>b 3
b > a (b dominates a) if and only if b>a
a ~ b (aand b are not comparable) if and only if azbAbza

Definitions for the minimisation problem (<, ~) could be derived in analogous fashion.

At this point the concept of Pareto optimality can be introduced. A solution is said to be Pareto optimal or “non inferior”
if any objective cannot be improved without degrading others.

Pareto Optimality: A decision vector x € X, and its corresponding objective vector y = f(x) € Y, is non-dominated
with respecttoaset A C Y, if and only if

VaeA:(y>avy~a) (4)

When y is non-dominated with respect to the whole set Y, —and only in that case- x is a Pareto optimal solution, x €
X, (the Par eto optimal set) and the corresponding y is part f the Par eto optimal front Y.

Dealing with Pareto optimal solutions, it is clear that they are non-comparable. This points to the fact that a MOP does
not always have a single solution, but a set of compromise solutions. None of these solutions can be defined as “the
best”, unless other information is added (i.e. weight of every objective).

Pareto Optimal set and Pareto front. Given the set of feasible decision vectors X, , the function p(X,) returns the set of
non dominated decision vectors that belong to X, i.e.:
p(X) ={ x € X, |xisnon dominated with respect to X; } (5)

The set X, = p(X)) is known as the Pareto optimal set, while the corresponding set of objective vectors Y, = f(p(X))
constitutes the Pareto optimal front.

3 STATEMENT OF THE PROBLEM

A network can be modelled by a probabilistic undirected graph [6] G = (V, L, p), where:
e Vs the node set.
o [ is the arc set. The cardinality of L is also the number of possible links and can be expressed as

_llvi-1) 2

nz‘L‘ 5

e And p is the reliability of links.

The problem of network design consists of choosing the links given the communication centres locations, and the
potential links with their cost and reliability. The resulting network should acquire a certain set of values for the
objectives and comply with another set of requirements.

From the definitions mentioned in the previous section, it is obvious that the problem of backbone network design
optimisation can be expressed as a multiobjective optimisation problem. As the problem can be as big as a designer
states it (i.e., he can choose as many objectives as he wants, he can have as many kind of links as technology and budget
lets him), there is a need to place limits on it. In the present work, it is stated as the optimisation of two objectives (k =
2): reliability and cost. The fact that every network topology must be connected is expressed by restricting reliability to
positive values, then the proposed solutions must meet only a minimum reliability requirement (m = 1). It is assumed
one bi-directional link between each pair of nodes (redundancy is not allowed), thus the potential links between every
pair of nodes are the decision variables. Every decision variable x is composed of a n-tuple (x;, x, ..., X,,).

The constraints on redundancy and number of objectives are only apparent and do not make the problem less general, as
the addition of new objectives is a trivial problem, even though it may require more computational resources. Also,
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redundant links can be treated as another kind of link, with its own cost and reliability [10]. Then, the expression of the
problem is:
Optimise y=1(x) = (f,(x), £,x)) (7)
subject to e(x)>0
where:
e  X=(X, X, .., %) € Xisthe decision vector; every x {0, 1, ..., t} represents a (type of) link between a pair of nodes
and t isthe number of different link types (0 is used to indicate the absence of connection);
y= (Y, Y,) € Y isthe objective vector;
fi1(x) is the reliability corresponding to the configuration x;
f>(x) is the cost function of the same configuration x;
e;(x) refers to the minimum acceptable reliability;

Although parameters like speed, capacity and throughput are important for innovative applications, the main network
design objectives are cost and reliability [10]. Both functions were studied in almost all papers found referring to design
optimisation problems. Sometimes, the problem was declared as the minimisation of cost, subject to a reliability
constraint; while some others as the maximisation of reliability subject to a cost constraint. Even some times [6] a
weighted sum approach of both objectives was suggested. But the multiobjective nature of the problem has not been
previously evidenced.

The concept of reliability depicts the probability of a system to have an expected performance over a time interval. So,
the reliability of a system depends on its configuration and the reliability of its components. There are many methods
and metrics to measure the reliability. For our instance of the problem, to ensure that there is always a communication
path between every pair of nodes in the network, the all-terminal reliability metric was chosen (i.e. the network forms at
least a spanning tree) [2, 10]. The reliability calculation is done via Monte Carlo simulations because there are not other
methods that can give good results in acceptable time (the problem of computing the reliability of a network is, in its
time, NP-Hard [2]). The pseudocode for the reliability calculation procedure is:

Procedure Reliability(x)
Begin
i=0
counter =0
Whilei < Number_ MC _replications
Randomly generate a network NET, from x
If NET forms a spanning tree
counter = counter + 1
End If
izi+1
End While
Computed_reliability = counter/Number_MC replications
End

Pseudocode 1. Reliability Calculation

The cost of every configuration is calculated adding up the costs of every link added to the topology. Each link has a
cost that is the product of the distance it covers and the cost per distance unit, i.e. the cost of a configurationx is:
" (8)
fx) = Y dist _unit, *cost(c,,i)
i=1
where:
e dist_unit, isthe distance —in units- that the link i covers; and
e cost(c, i) isthe cost —per unit— of the type of link c.

In order to solve the problem the following assumptions are necessary [5]:

e The nodes are perfectly reliable (failure of nodes can be simulated by a failure of its incident links).
The cost and reliability of each potential link are known.

The links can be in only one of two possible states: operational or failed.

Links fail independently, i.e. the failure in a link does not imply the failure of another.

No repair is considered, i.e. when a link fails it is not repaired and put into operation afterwards.




4 TEST PROBLEM

The test problem is based on the expansion of the ULAK-NET network, first published in [5]. It is a simplified version
of area network design problem conceived to link, using distinct types of fiber, 19 universities and research centres
located in 9 different cities of Turkey. It was chosen because it is the largest published example found during our
research. Besides, the results of this example were available; therefore, they were used to compare them with our
experimental results.

Table 1 shows the distance matrix in kilometres for each pair of nodes. Three types (t = 3) of fiber optic links are
considered; their costs and reliabilities are (333 $/km, 96%), (433 $/km, 97.5%) and (583 $/km, 99%) respectively.

AR

Then, the size of the search space is composed of 3.8*10*" | ¢ 2 individuals of the form (x,,..., x,,,) with their

corresponding cost and reliability.

vl |v2 |v3 |v4d |vS |v6 |v7 |[v8 |v9 |vI0 |vil |vI2 |vI3 |vi4 |vl5 |vi6 |vI7 |vI8 |vl9
vl |- 111|126 | 120 [122 | 115|116 | 132 [346 |968 |343 |344 |106 |[107 |105 |454 |613 |828 |1261
v2 - 15 |15 |17 |5 6 243 1458 | 1079|454 | 456 | 10 11 5 565 | 724 |939 | 1342
v3 - 15 (17 |13 |14 |258 [473 1094|469 |471 |25 26 |23 580 | 740 |954 |1357
v4 - 2 5 6 248 1460 | 1082|456 | 457 | 12 13 15 570 | 730 |943 | 1353
v5 - 8 9 251|463 | 1085|459 | 460 | 15 16 18 573 | 733 |946 | 1355
v6 - 1 246 1457 | 1080|454 | 455 |10 9 12 568 | 728 |940 | 1350
v7 - 2451456 | 1079|453 {454 |9 8 11 567 | 727 |939 | 1351
v8 - 384 {383 | 380|381 |235 |236 |240 |322 |542 |831 |1301
v9 - 766 |3 4 450 |451 |453 |580 |542 |487 1920
vl0 - 763 | 764 | 1074 | 1075|1077 | 1345|1307 |972 | 624
vll - 1 450 |451 |453 |582 |544 489|921
vl2 - 449 1450 |452 |583 |545 490|922
vl3 - 1 4 560 | 720 |932 |1337
vl4 - 3 561 | 721 |933 |1338
vl5 - 563 | 723 |934 |1340
vl6 - 469 | 898 | 1424
vl7 - 553 11079
vl8 - 526
vl9 -

Table 1. Distance matrix for the test problem.

5 DESCRIPTION OF THE IMPLEMENTATION
For the application of the Multiobjective Evolutionary Algorithm (MOEA), each possible solutionx = (x;, x;, ..., X,,), was
coded using a string of integer numbers, x; € {0, 1, ..., t}. To obtain the string, an adjacency matrix of the graph that

models the network was written [7]. As this matrix is symmetrical, only the upper triangular part was inserted into the
chromosome. For example, to code the network of figure 1, the matrix of figure 2 was used.

Figure 1. Graphical representation of a computer network backbone.
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Figure 2. Adjacency matrix for network of figure 1.

The final representation x, taken from the upper triangular part —and not considering the diagonal-, is the string
1300012022.

Continuing with the test problem the calculation of reliability is accomplished with Monte Carlo simulations [8, 10].
Only 10000 replications were made due to the high computational cost. Solutions not achieving the minimum reliability
requirement are not inserted in the external population, even though they may be part of the purported Pareto set.
Anyway, they remain in the current population because feasible children can be generated from them. As it was formerly
stated, the total cost of a network is the sum of the costs of its links.

Following the definition of SPEA [16], two populations of individuals are kept, the first one (depicted as P) is known as
the current population, while the second one or external non-dominated set P’ maintains every non-dominated individual
found so far.

The process of finding the non-dominated individuals in P is based on the concept of dominance expressed in section 2.
Every time a new non-dominated individual is found, it is compared against the members in P’; if it is a new solution, it
is inserted into P’. The number of individuals in P is N and remains constant during the whole generational loop, but the
number of individuals in P’ may change. P’ can not have more individuals than a previously stated number of N'. If the
size of P’ is greater than N’, clustering should be performed. The process of clustering [11, 16] has been implemented,
but was never used because the maximum size of the external population was never reached.

SPEA differs from the traditional genetic algorithm only in the way fitness is assigned to individuals. The computation
of the fitness value follows the procedure explained in [16]. Every member of P’ has a fitness equal to the number of
individuals in P it dominates, plus one; while every member of P has as fitness the sum of fitness of members of P’ that
dominates him. In this way it is ensured that members of P’ have a better fitness value than members of P. Notice that
this is in the context of fitness minimisation. The fitness assignment process, as well as clustering, induces the
maintenance of diversity [16].

Selection is implemented with binary tournaments, and the next generation is created via one point crossover.

The mutation operator takes m% individuals from the population and changes every allele from its chromosome with
probability 0.3.

The parameters of the SPEA are the following:

e  Population size (V): 100 individuals.

External non-dominated set size (N’): 100 individuals.

Maximum number of generations (g,,,.): 5000.

Crossover probability (p.): 1.

Mutation rate (r,,): 0.3.

Percentage of population mutated in each generation (m%): 5%.

The initial population for the algorithm was generated randomly, but individuals with less links have a greater
probability of being inserted into the initial population (this approach has shown its usefulness to speed up convergence).
A stop criteria has also been implemented. The algorithm continues with its generational cycle if new individuals are
being inserted into P’ every 10 generations, or if the maximum number of generations (5000) has not been reached.
Those numbers were chosen for the first implementation, but a complete study still should be done.

When the algorithm stops it has its results in P’, which is called the known Pareto set Xj,,,.,; the corresponding objective
vectors Yiown = f(Ximown) 18 the known Pareto front. Pseudocode 2 presents the sequential version.



Procedure NetworkDesignSeqSPEA ()
Begin.
Read initial input parameters for the SPEA: s, g, P., I, M%
Read parameters of the problem: cost and reliability of links
Read randomly generated initial population P
Generation_Counter = 1
While StopCondition is not reached and Generation_Counter < g,
Compute the value of each objective function for each individual
Find non-dominated individuals in current population P
Update external non-dominated set P’
If the number of externally stored non-dominated solutions exceeds a given maximum N’
prune P’ by means of clustering
End If
Calculate the fitness of each individual in P and P’
Select individuals from the union set P + P’ until the mating pool isfilled
Apply specific crossover and mutation operators to generate the new set P
Generation_Counter = Generation_Counter + 1

End While
Write out the individuals from P’ as X;,,,,,,, With their corresponding Y.,
End
Pseudocode 2. Sequential version of SPEA
6 PARALLEL VERSION

As the calculation of objective values, specially the computation of reliability, is very time consuming, the execution
time of the proposed solution can be improved running it in a distributed environment.

Moreover, the total implementation costs can be reduced significantly if we use a network of inexpensive personal
computer instead of a massively parallel supercomputer.

The main algorithm consists of two kinds of processes, an organiser and several PSPEAs (Parallel Strength Pareto
Evolutionary Algorithm processes). There is only one organiser, with the responsibility of creating all the PSPEAs and
collecting the final results. The PSPEAs do the real work.

The pseudocode for the organiser process is the following:

Procedure NetworkDesignOrgani serParallel Spea()
Begin
Spawn H PSPEAS
flag_counter =0
While flag_counter < H
Wait for flag from H processes
If aflagisreceived
Collect the results from the process that has sent the flag and kill him
flag_counter = flag_counter + 1

End If
End While
Do the union operation over all sets obtained from the PSPEAS
Apply the Pareto dominance concept over the resulting set to obtain X, with its corresponding ¥y,
Write final result out.
End

Pseudocode 3. Parallel version of SPEA. Organiser Procedure.

Straightaway, the PSPEAs are discussed. Given a distributed system with H processors, in each processor 4, h € {1, ..,
H}, two populations are kept P,(g) and P ’,(g). The population P,(g) contains the members generated by crossover in the
previous generation g-1; while P’,(g) is the external set of non-dominated solutions found from the beginning of the
generational loop, until generation g is reached.

Once found, the new solutions for P’,(g) in each processor %, at generation g, they are broadcasted to all the other
processors. This procedure is known as sending and reception of migrants. The receiving processors accept all the
migrants, as long as their memory capacity is not exceeded.



For the sequential version the population is composed of N individuals; as the parallel version is implemented in H
identical processors, the size of each population P, will be % . When migrants are received, the population grows;

returning to its normal level after the genetic operators (as selection) are applied.
The pseudocode is as follows:

Procedure NetworkDesignParallel Spea()
Begin.
Read initial input parameters for the PSPEA: s, g, ., P, I, Mm%
Read parameters of the problem: cost and reliability of links
Read randomly generated initial population P
Generation_Counter = 1
While StopCondition is not reached and Generation_Counter < g,
Compute the values of every objective function for each individual
Receive migrants from other processes and add them to current population P
Find non-dominated individuals in current population P
Update external non-dominated set P’
Selectively broadcast all new solutions from P’
If the number of externally stored non-dominated solutions exceeds a given maximum N’
Prune P’ by means of clustering
End If
Calculate the fitness of each individual in P and P’
Select individuals from the union set P + P’ until the mating pool isfilled
Apply specific crossover and mutation operators to generate the new set P
Generation_Counter = Generation_Counter + 1
End While
Inform the organiser that processis done by sending aflag
Send the individuals from P’ to the organiser
Wait for the kill signal sent by the Organiser
End.

Pseudocode 4. Parallel version of SPEA. PSPEA Procedure.

The proposed method has emerged from preliminary discussions and has proved its effectiveness. Notwithstanding,
subsequent experiments founded in other ideas will be held.

7 PERFORMANCE METRICS

To evaluate experimental results using the two versions, an appropriate test suit metricsis used, because no single metric
can entirely capture performance, effectiveness and efficiency for multiobjective evolutionary algorithms.

Since most of these metrics reflect the likeness between the true Pareto optimal front (Y,,) and the computed Pareto
front Y, ... @ good approximation of the true Pareto optimal front is built by gathering all non-dominated individuals
from al sets. In other words, for the following results, the real Pareto Optimal front is approximated by the best known
solutions of all our experiments.

The test suit comprises the following metrics:

1 Overal Non-dominated Vector Generation (ONVG) [15]: simply counts the number of solutions in the Pareto
frontY, .
A (9)
ONVG = | IIICI‘IOWH ’C
where | |c denotes cardinality.
2) Overall true Non-dominated Vector Generation (OTNVG): counts the number of solutions in the Pareto front
Yo that are also in the true Pareto optimal front Y, ..
A
OINVG=|ly|yeY,,., ~ ye¥,.| (10)



3) Overall Non-dominated Vector Generation Ratio (ONVGR) [15]:

AONVG
ONVGR= 7| (12)
true lc
It denotes the ratio between the number of solutionsin Y, . to the number of solutionsin the true Pareto front Y, .. Since

true®
the objectiveisto obtainaset Y, assimilar to the true Pareto front asit is possible, avalue near to 1 is desired.

known

4) Error Ratio (E) [15]:
N
E i Zi:l ei
ONVG (12)
. 0 ifavector inY,,,, isalsoin the true Pareto Front Y,
11 otherwise

This ratio reports the proportion of objective vectorsin 'Y, . that are not members of Y, .. Therefore an error ratio close
to 1 indicates a poor correspondence between the obtained and the true Pareto front, i.e. E = 0 isdesired.
5) Generational Distance (G) [15]:

s ) a3

ONVG
where d, is the Euclidean distance (in objective space) between each objective vector F in Y, and its nearest

correspondent member in the true Pareto front Y,.. A large value of G indicates Y, ., is far from Y, being G = O the
ideal situation.

8 EXPERIMENTAL RESULTS

The results presented here were obtained from successive runs over a 10Mbps Ethernet network composed of up to 8
personal computers, each one with a AMD K6-2 350 MHz processor, with 128 MB of RAM. The program code is
entirely written in C, and the parallel implementation was done using PVM (Parallel Virtual Machine) running over
LINUX (Mandrake 7.0). As an example Table 2 presents the values of objective functions obtained using a 4 processors
configuration, while figure 3 shows the corresponding Pareto front.

Reliability Cost Reliability Cost Reliability Cost
0.68920 1433898 0.97470 1693106 0.99210 2094903
0.80280 1473659 0.97530 1694771 0.99260 2105892
0.80470 1477188 0.97620 1698300 0.99310 2167986
0.80720 1519613 0.97630 1699965 0.99360 2183481
0.80830 1523142 0.97640 1742035 0.99430 2249748
0.81250 1524807 0.97940 1776381 0.99540 2252568
0.81930 1566877 0.98220 1804194 0.99580 2389966
0.90800 1604727 0.98250 1808523 0.99620 2405748
0.90990 1605527 0.98370 1809323 0.99630 2445266
091110 1609056 0.98390 1810988 0.99650 2458872
0.91475 1613852 0.98420 1814517 0.99660 2631366
0.95960 1639359 0.98560 1820844 0.99780 2666686
0.96300 1641158 0.98600 1823508 0.99790 2697633
0.96810 1642023 0.98660 1851947 0.99830 2704293
0.96850 1646352 0.98820 1854477 0.99850 2848482
0.96980 1648017 0.98890 1855277 0.99910 2980683
0.97080 1657808 0.99050 1914106 0.99960 3142521
0.97170 1661337 0.99120 1942881 0.99980 3528468
0.97390 1689776 0.99200 2008323 1.00000 3873123

Table 2. Results obtained from a run with four processors.
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Different parallel configurations were used in several runs to obtain the representative results presented in Table 3. The
first column is the run number; runs 1 to 5 are executed with only one processor (sequential version); runs 6 to 10 are
obtained with two processors, runs 11 to 15 were made with four processors; finally, runs 16 to 20 were implemented
over eighth processors. Each run used a different randomly generated population of initial solutions. Column 2 depicts

Cost
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Figure 3. Pareto front obtained from a run with four processors.

the number of processors in each run.

Column 3 presents the number of Pareto Optimal solutions found in each run denoting the metric defined as ONVG in
the previous section. Column 4 contains the number of solutions found that belong to the true Pareto Optimal Front ¥,
or OTNVG. Column 5 is the computation of ONVGR, as presented in section 7. Column 6 and 7 are total error and
generational distance, respectively. Column 8 is the time —expressed in hours— each run lasted. The last column is
obtained applying the concept of dominance over columns 3, 4, 5, 6, 7 and 8, i.e., it establishes a ranking among runs,

based on time and other test metrics. The ranks of better solutions are lower than that of worse ones.

Run | N°of | ONVG | OTNVG | ONVGR E G Time RANK
Proc.
1 1 41 0 0.7321 1.0000 | 0.0162 8.640 5
2 1 42 0 0.7500 1.0000 | 0.0291 8.712 5
3 1 46 0 0.8214 1.0000 | 0.0214 8.950 5
4 1 46 0 0.8214 1.0000 | 0.0119 8.450 4
5 1 51 0 0.9107 1.0000 | 0.0172 9.003 4
6 2 44 0 0.7857 1.0000 | 0.0109 5.210 4
7 2 44 0 0.7857 1.0000 | 0.0147 4.960 4
8 2 51 0 0.9107 1.0000 | 0.0176 5.680 4
9 2 51 0 0.9107 1.0000 | 0.0079 5.340 3
10 2 57 0 1.0179 1.0000 | 0.0076 5.020 2
11 4 45 4 0.8036 | 09111 | 0.0066 2.780 3
12 4 47 5 0.8393 0.8936 | 0.0065 2.640 2
13 4 52 0 0.9286 1.0000 | 0.0053 2.859 2
14 4 56 0 1.0000 1.0000 | 0.0092 3.050 1
15 4 57 37 1.0179 | 0.3509 | 0.0024 2.956 1
16 8 41 0 0.7321 1.0000 | 0.0085 1.498 2
17 8 47 10 0.8393 0.7872 | 0.0055 1.486 1
18 8 50 0 0.8929 1.0000 | 0.0046 1.560 1
19 8 58 0 1.0357 1.0000 | 0.0069 1.689 1
20 8 59 0 1.0536 1.0000 | 0.0111 1.670 1
Table 3. Results obtained with 1, 2, 4 and eighth processors.

It is interesting to realise that greater number of processors yield to a better rank, i.e. better multiobjective solutions.
Moreover, table 4 presents a statistical study of ranks. The sum of ranks as well as average rank, decrease when the
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number of processors increases. Fourth column presents standard deviation of the sample, while fifth and sixth columns
are the maximum and minimum ranks of the set respectively.

N° of|Sum of Ranks| Average Standard Maximum Rank | Minimum Rank
Proc. Deviation value value
1 23 4.6 0.548 5 4
2 17 34 0.894 4 2
4 9 1.8 0.837 3 1
8 6 1.2 0.447 2 1
Table 4. Statistical study of ranks

This table clearly shows that parallelism is beneficial for the multiobjective performance of the proposed algorithm, i.e.
if all objectives (test metrics plus execution time) are considered, parallel version outperforms the sequential version.
Besides, the model is scalable, as eighth processors acquire better solutions than one, two or four processors.

This result is very promising not only for computer network backbone design, but for other complex engineering design
problems, where the computation of objective values makes impossible the enumerative search, and other traditional
methods also fail.

6

CONCLUSIONS

The contributions of this work can be summarised as follows:

The proposal of a new approach to the network design problem. This problem has been addressed in several
ways but has not been previously treated as the optimisation of multiple objectives. The approach is useful in the
sense that it leads to a complete set of optimal solutions instead of the single solution proposed in other works.
Furthermore, this proposal can be implemented in interactive design environments where the decision-maker
changes parameters dynamically and narrows or widens the search space seeing immediate results.

Parallel version of SPEA. We suggest and implement (for the first time in the literature) a simple and effective
way of making a parallel version of a MOEA. The advantages are twofold: execution time is lowered, then the
algorithm can be applied to time consuming problems; and the cost of the implementation is decreased, as our
implementation runs in a relatively low in price network of personal computers and not in a expensive
supercomputer. Also, as shown in the experimental results, the parallel version is capable of obtaining a broader
set of solutions than the sequential one.

We have discussed and implemented stop criteria, which is an innovation for MOEASs. This implementation
decreases execution time and it lets the algorithm stop before arriving to the stated maximum number of
generations. This also allows a study of convergence point for MOEAS, which has not previously been done.

Asdirection for future work, we can indicate the following:

Raise the number of objective functions. In this regard, mean and maximum delay have been considered because
both can be implemented without much computational effort and without the need of applying complex routing
algorithms. Actually, we are carrying out experiments in this field. Throughput is also being examined.

Make a statistical study to find optimal convergence point for the algorithm. In this respect, other stop criteria,
like one that summarises values of test metrics, can be regarded as well.

Choose and implement other MOEAS; build a parallel version of them and compare the obtained results. In this
regard, we are presently working on a sequential and parallel versions of the Non Dominated Sorting Genetic
Algorithm (NSGA) [3], applied to the problem treated in this work.

Apply paralel versions of MOEAS to other complex engineering design problems to test the flexibility and
robustness of the approach.

In conclusion, the present work demonstrates the usefulness of parallel asynchronous implementations to solve a
multiobjective optimisation problem, resulting in a better performance (specially in execution time). With the newly
proposed technique at hand, traditional mono-objective design of telecommunication networks may consider more
(complex) objectives, as several quality of services parameters, to obtain more realistic designs in practical situations
where alot of conflicting compromises should be considered.
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