
      Multitree-Multiobjective Multicast Routing          
for Traffic Engineering 

Joel Prieto1, Benjamín Barán1,2, Jorge Crichigno1 

1 Catholic University of Asunción. Tte. Cantaluppi y Villalón. PO Box 1638, 
Asunción, Paraguay 

jprieto@telesurf.com.py, jcrichigno@ece.unm.edu 
2 National Computer Centre, National University of Asunción. PO Box 1439. 

San Lorenzo, Paraguay 
bbaran@cnc.una.py 

Abstract. This paper presents a new traffic engineering multitree-
multiobjective multicast routing algorithm (M-MMA) that solves for the first 
time the GMM model for Dynamic Multicast Groups. Multitree traffic engi-
neering uses several trees to transmit a multicast demand from a source to a 
set of destinations in order to balance traffic load, improving network resource 
utilization. Experimental results obtained by simulations using eight real net-
work topologies show that this new approach gets trade off solutions while 
simultaneously considering five objective functions. As expected, when       
M-MMA is compared to an equivalent singletree alternative, it accommodates 
more traffic demand in a high traffic saturated network. 

1   Introduction 

Multicast consists of concurrently data transmission from a source to a subset of all 
possible destinations in a computer network [1]. In recent years, multicast routing 
algorithms have become more important due to the increased use of new point to 
multipoint applications, like radio and TV, on-demand video and e-learning. Such 
applications generally have some quality-of-service (QoS) requirements as maxi-
mum end-to-end delay and minimum bandwidth resources.  

When a dynamic multicast problem considers various traffic requests, not only 
QoS parameters must be considered, but also load balancing and network resource 
utilization [2]. These objectives cannot be met by traditional Best Effort Internet 
routing approaches.  

In order to solve this problem, Traffic Engineering proposes the optimization of 
network resources using load-balancing techniques. The main idea behind a load 
balancing technique for multicast transmission is to partition a data flow into several 
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sub flows –or trees– between a source and all destination nodes. This objective is 
usually accomplished by minimizing the utilization (α) of the most heavily used 
network resource, as a link (what is known as maximum link utilization). Load     
balancing technique not only reduces hot spots over the network, but also provides 
the possibility of supporting connections of high bandwidth requirements through 
several links of low capacity. 

Multicast Traffic Engineering problems (MTE) simultaneously consider several 
objectives to be optimized; therefore, it has been recognized as a Multiobjective 
Optimization Problem (MOP) [3]. A lot of multiobjective algorithms for multicast 
routing were proposed in the literature [3-6, 8-13, 15-18]. They are generalized in 
the GMM model for Dynamic Multicast Groups [11, 18]. GMM model considers a 
multitree multicast load-balancing problem with splitting in a multiobjective context.  

This work presents a multitree routing algorithm that solves for the first time the 
dynamic problem of multicast routing considering not only static routing, but also 
dynamic routing, where multicast groups arrive one after another into a network.  

The remainder of the document is organized as follows: Section 2 presents the 
mathematical formulation of the problem. A brief introduction to multiobjective 
optimization problems appears in Section 3. A complete explanation of the proposed 
algorithm is presented in Section 4. Testing scenarios are shown in Section 5. The 
experimental results are discussed in Section 6, while the final conclusions and  
future works are left for Section 7. 

2   Problem Formulation  

A network is modelled as a direct graph G(V,E), where V is the set of nodes and E is 
the set of links. Let (i,j) ∈ E be the link from node i to node j. For each link (i,j) let 
zij, dij and tij ∈ ℜ+ be its capacity, delay and current traffic respectively. Let s ∈ V 
denotes the source node, N ⊆ V - {s} denote the set of destination nodes, and φ ∈ ℜ+ 
the traffic demand (in kbps) of a multicast request, which is treated as a flow f. Let 
consider that f can be split into a number of sub flows fk (k=1,2,..,|K|), where |K| 
denotes the cardinality of set K. For each fk, a multicast tree Tk(s,N) must be       
constructed to transport a traffic φk , which is part of the total flow demand φ, as 
shown in (9).  

Let pTk (s, n) ⊆ Tk(s, N) denote the path that connects the source node s with a 
destination node n ∈ N using tree Tk. Finally, let d(pTk(s, n)) and h(pTk(s, n)) repre-
sent the delay and the hop count of pTk (s, n), i.e.,  
         ( )( ) ∑
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Using the above definitions, the multicast routing problem for traffic engineering 
treated in this paper is formulated as a MOP that tries to find a set of |K| multicast 
trees Tk(s,N) that minimizes the following five objective functions: 
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b- Average delay:  
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c- Maximal delay:  
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d- Hop count average: 
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e- Total bandwidth consumption:  
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subject to: 
f-  Link capacity constraint: 
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g-  Total information constraint:  

∑
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It should be mentioned that not all |K| sub flows are necessary used. Therefore, if 
any φk =0 (k =1,2,..,|K|), Eq. (4), (5) and (6) do not consider the corresponding   

Tkp (s, n) for calculation given that the tree is not used to transmit any information. 
Of course, the value of |K| should be properly adjusted. 

3   Multiobjective Optimization Problems 

A general Multiobjective Optimization Problem (MOP) includes a set of l decision 
variables, r objective functions, and c restrictions. Objective functions and restrictions 
are functions of decision variables. This can be expressed as: 

Optimize      y = g(x) = (g1(x), g2(x), ... ,gr(x)). 
Subject to    e(x) = (e1(x), e2(x), ... ,ec(x)) ≥ 0, 
 

Where  x =  (x1, x2, ...,  xl) ∈ X  is the decision vector, and  
                y =  (y1, y2, ...,  yr ) ∈ Y  is the objective vector. 
 

 X denotes the decision space while the objective space is denoted by Y.  De-
pending on the problem at hand, “optimize” could mean minimize or maximize. The 
set  of  restrictions  e(x)≥0  determines  the  set  of  feasible  solutions  Xf  and  its 
corresponding set of objective vectors Yf.  A multiobjective problem consists in 
finding x that optimizes g(x). In general, there is no unique “best” solution but a set 
of solutions, none of which can be considered better than the others when all objec-
tives are considered at the same time. This derives from the fact that there can be 
conflicting objectives. Thus, a new concept of optimality should be established for 
MOPs. Given two decision vectors p, q ∈ Xf : 

 

g(p)  =   g(q)   iff   ∈∀i { 1, 2,..., r}:  gi(p) =  gi(q) 
g(p)  ≤   g(q)   iff   ∈∀i {1,2,..., r}:  gi(p) ≤  gi(q) 
g(p)  <   g(q)    iff     g(p) ≤  g(q)  and  g(p) ≠  g(q) 

Then, in a minimization context, two solutions p, q ∈ Xf  satisfy one and only 
one of the following three conditions:  

p ≻ q  (p dominates q),  iff   g(p)<g(q) 
q ≻ p  (q dominates p),  iff   g(q)<g(p) 
p ~ q  (p and q  are non-comparable), iff  p⊁q  and  q⊁p. 
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A decision vector x∈ Xf  is non-dominated with respect to a set Q ⊆  Xf iff:      
x ≻ q   or   x ~ q, ∀ q∈ Q. When x is non-dominated with respect to the whole set 
Xf, it is called an optimal Pareto solution; therefore, the Pareto optimal set Xtrue may 
be formally defined as: Xtrue ={x∈ Xf | x is non-dominated with respect to Xf}. The 
corresponding set of objective vectors Ytrue = f(Xtrue) constitutes the Optimal Pareto 
Front. 

4   Proposed Algorithm 

Inspired in the SPEA scheme [14] the proposed M-MMA algorithm holds an evolu-
tionary population P and an external Pareto solution set Pnd. The algorithm begins 
with a set of random configurations called initial population. Each individual in the 
population represents a potential solution to the problem. 

At each generation, the individuals are evaluated using an adaptability function, 
also known as fitness, proposed by SPEA, which is based on the dominance criterion 
presented in section 3. Based on this value, some individuals called parents are se-
lected. The probability of selection of an individual is related to its fitness. Then, 
genetic probabilistic operators are applied to the parent to construct new individuals 
that will be part of a new population. The process continues until a stop criterion (as 
a maximum number of generations) is satisfied. M-MMA is summarized in Fig. 1. 

 

 
  - Read multicast group and traffic demand 
  - Initialize sets P and Pnd 
  Do { 
  - Discard identical individuals of P 
  - Calculate objective functions of each individual in P 
  - Apply local optimization algorithm 
  - Update non-dominated set Pnd 
  - Compute fitness 
  - Selection 
  - Construct new solutions using crossover 
  } while stop criterion is not satisfied 

Fig. 1. M-MMA algorithm                        Fig. 2. Chromosome representation          

4.1.   Encoding 
Each chromosome or individual is a candidate solution for the problem. Inspired 

in the GMM-model [11], an individual is represented by a set of trees transporting a 
flow f (Fig. 2). Each flow is split in |K| sub flows, as shown in (9), with a tree Tk 
transmitting sub flow fk. A tree is represented by the set of links belonging to it [6]. 
The field φk associated to each sub flow is the total information transmitted through 
Tk. This encoding scheme was selected motivated by the promising results obtained 
by Crichigno et al. [6], who conclude that better solutions are found when the trees 
are represented as a set of links instead of different paths. 

4.2.   Initial population 
The procedure proposed in M-MMA to generate each initial solution of P is 

shown in Fig. 3. The initialization procedure, called PrimRST (Prim Random Steiner 
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Tree), was proposed in [6]. Starting with a source node s, at each iteration, the algo-
rithm expands the tree Tk by choosing a new link from a set A, which contains all 
possible new links for the tree. A set Vc contains the nodes already in the tree. The 
procedure continues until all destination nodes N are included in Vc. The value of φk 
is initialized as φ / |K|. The value of |K| should be previously decided by the traffic 
engineer. For the experimental results that follows, |K| = 2 was chosen. We have 
considered this small value because the problem is very complex. Moreover, in 
GMM model [11] the quantity of sub flows is considered as an objective function, 
because this algorithm is thought for MPLS networks [2], where the quantity of 
labels is limited. The PrimRST algorithm is iteratively used to construct each tree Tk 
of the |K| trees that constitute a chromosome, as shown in Fig. 2. 

 

 

 

 
 
 
 
 

 

 

 
 
 

Fig. 3. Procedure PrimRST used to build             Fig. 4. Local Optimization Procedure 
random multicast Trees   

 

4.3.   Local optimization 
This procedure tries to optimize the amount of information φk to be transmitted 

through each sub flow, satisfying (8) and (9). In order to differentiate between two 
individuals of P, let f i be the i-th flow or individual of P (i=0,1,…,|P|), φ 

i the total 
flow demand for that individual, and φk

i the k-information amount transmitted 
through sub flow fk

i. Local Optimization procedure is presented in Figure 4. The 
process modifies the values of φk

i in the following way:  
a)  φ1

i is increased and φ2
i  is decreased in a percentage ∆ of φ i . In fact, φ2

i  is calcu-
lated as (φ i - φ1

i ). Initial value for ∆ (known as ∆0) and its minimum value ε are 
parameters of the procedure.  

b)  If total information constraint (9) is fulfilled, new temporal values φ1
*
 and φ2

*
  are 

calculated and objective vector f * is evaluated; otherwise, ∆ is reduced to ∆/2 
and the process goes back to step a). 

c)  If the new solution f * dominates f i, new values φ1
*
 and φ2

*
  are accepted as   

current best value and the process continues; otherwise, ∆ is reduced to ∆/2 and 

PrimRST(G(V,E), s, N) 
- Tk = {}; 
- Vc = {s}; 
- A = {(s, j) |  (s, j) ∈ E,  j ∈ V}; 
do{ 
        - Choose a link (i, j) ∈ A at random. 
        - A = A – {(i, j)}. 
         If  j ∉ Vc  Then 
              - Tk = Tk ∪ {(i, j)}. 
              - Vc = Vc ∪ {j}. 
              - A = A ∪ {(j, w)  | (j, w) ∈ E , w ∉ Vc}; 
          End if 
} while (N  ∪ {s} ⊄ Vc) 
- Prune useless links of Tk 
- Return Tk 

Local Optimization (P, ∆0, ε ) 
For  i=1 until |P| 
∆=∆0 

While ∆ > ε 
 If  φ1

 i
 + ∆·φ i ≤ φ i  then 

 φ1
*

 = φ1
 i

 + ∆·φ i 
 φ2

* = φ i  - φ1
 i

 

 Evaluate individual f* 
 If  f* ≻ f i then 
  φ1

 i
 = φ1

*   
  φ2

 i
 = φ2

* 
 else 
  ∆ = ∆ / 2 
 End if 
 else 
 ∆ = ∆ / 2 
 End if 
 End while 
End for
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the procedure goes back to step a). 
d)  Iteration continues while ∆ > ε.  
Once the iteration is completed, a new iteration begins, but instead of incrementing 
φ1

i, it is decreased.  

4.4.   Crossover 
The crossover algorithm is based on the one originally presented by Zhengying et 

al. [16]. It was also used in several other publications [6, 7, 15]. The algorithm has 
four stages: 

1. choose one tree from each parent; 
2. identify common links of the selected pair. These links will be part of the child 

tree  that will be in the next generation of P.  Given  that  common links of the 
parents could lead to a child composed of disjoined sub-trees, new links may be 
added [16]; 

3. connect the disjoined sub-trees until a multicast tree is constructed. At this step, 
the  sub-trees are connected at random.  Each sub-tree has a root node.  At each 
iteration, an interconnection algorithm adds a new link, which has a source-node 
already in a sub-tree. Two sub-trees are connected when the root of one sub-tree 
(T1) is the destination node of the selected link, and the source node of the link be-
longs to the other sub-tree (T2); the root of the new sub-tree is the root of T2 ; 

4. calculate ( ) 2q
j

p
jj φφφ += , for both sub flows j=1, 2, where p

jφ and q
jφ  are the 

j-information amount (φ j) from the two parent trees p and q. 
In order to fulfil the flow constraint given by (9), a normalized process computing φk 
is used. For a new individual, the new φk is given by the following equation:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

||

1

K

k
kk

new
k φφφφ  (10) 

5   Testing Scenario 

Eight network topologies were used for testing purpose. They were: NTT (Nippon 
Telephone and Telegraph Co., Japan) [5], NSF (National Science Foundation, 
United States-US) [5], Telstra (Australia) [19], Sprintlink (US) [19], Ebone (Europe) 
[19], Tiscali (Europe) [19], Exodus (US) [19] and Abovenet (US) [19]. 

In order to compare M-MMA behaviour under several traffic loads over the net-
work, three scenarios were defined for every topology: (a) low load, (b) high load 
and (c) saturation. For every scenario, Ψ traffic requests were generated, simulating 
a dynamic situation in which they arrive one after another. Each traffic request was 
created using a groupGenerator algorithm [7], summarized in Fig. 5. 

The groupGenerator algorithm generates a multicast group with a destination 
size between |N|min and |N|max; then, random(unif, 0, 2000) gives the arrival time of 
the group, with a uniform distribution between 0 and 2000 seconds. The duration of 
each group was exponentially distributed, with an average of 60 seconds. Finally,  
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       Fig. 5. GroupGenerator algorithm 
 
the traffic demand is set to a value between φ min and φ max. The parameters used to 
generate each scenario are given in Table 1.  

Talavera et al. [7] showed that most MOEAs may suit for the task of routing mul-
ticast demand, but the main factor to define performance in a dynamical environment 
is the policy used to choose a specific solution from a Pareto front. They proposed 
different policies to perform this task, proving that the policy of choosing the closest 
solution to the origin provides excellent trade-off values, outperforming the tradi-
tional policy of choosing the solution with better α.  Consequently,  we use that 
approach to select a solution from a Pareto front in our experiments. It is useful to 
mention that  [7] concluded that average number  of rejected groups might be con-
sidered an important metric to compare different algorithms and policies.  

Table 1. Parameters used to generate testing scenarios 

Network topology Parameters 

Name 
(Location) 

Nodes Links 
Scenarios 

load Ψ
 

minN
 

maxN
 

minφ  maxφ
 

Low 200 4 10 25 50 
High 300 10 25 50 200 

Telstra 
(Australia) 57 118 

Saturation 400 10 35 75 300 
Low 200 3 6 25 50 
High 300 9 12 50 200 

Sprintlink 
(US) 44 166 

Saturation 400 9 20 75 300 
Low 200 3 6 25 50 
High 300 5 10 50 200 

Ebone 
(Europe) 23 76 

Saturation 400 8 15 75 300 
Low 200 4 6 25 50 
High 300 9 12 50 200 

Tiscali 
(Europe) 49 172 

Saturation 400 10 20 75 300 
Low 200 3 6 25 50 
High 300 5 10 50 200 

Exodus 
(US) 22 74 

Saturation 400 8 15 75 300 
Low 200 3 6 25 50 
High 300 5 10 50 200 

Abovenet 
(US) 33 84 

Saturation 400 8 15 75 300 
Low 200 4 10 100 200 
High 300 10 25 200 800 

NTT 
(Japan) 55 144 

Saturation 400 10 35 200 800 
Low 200 2 5 25 50 
High 300 3 7 50 200 

NSF 
(US) 14 42 

Saturation 400 6 9 75 300 
 
For this problem, M-MMA was compared against MMA2 algorithm [6]. MMA2 

is a multiobjective multicast algorithm that routes a request demand through only 

groupGenerator 
group(i)  =    groupGenerator(|N|min, |N|max);    
Tbeg(i)       =    random(unif, 0,2000);  
Tend(i)       =   Tbeg(i) +  random(exp, 0,2000);  
φ  (i)       =   random(unif, φ  min, φ  max);  
End  groupGenerator
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one tree. We have chosen this algorithm because of its promising results when com-
pared to other alternatives as MMA1 [4, 5] and SK [17]. The following dominance 
metrics were taken into account: 
DMMA2:   Percentage of solutions selected using MMA2 that dominates the  

  corresponding M-MMA solutions. 
DM-MMA:  Percentage of solutions selected using M-MMA that dominates  

  the corresponding MMA2 solutions. 
I:     Percentage of indifference relationships. This occurs when solutions  

  found  by MMA2 and M-MMA are non-comparables. 
Eq:    Percentage of solutions found by both algorithms that have equal  

  values for objective functions. 
We also have compared the amount of solutions selected by M-MMA that uses only 
one tree to transmit the traffic demand. Finally, percentages of rejected groups for 
lack of link capacity are given for each scenario. 

6   Experimental results 

Results for the simulations performed on eight network topologies are shown in 
tables 2, 3 and 4. 

Table 2 summarizes the amount of solutions for each scenario according to the 
dominance metrics defined in section 5. There is not a clear dominant algorithm, 
given that many solutions are indifferent (in a multiobjective context) or they have 
identical values for the objective vectors. Shadowed cells in table 2 highlight this 
fact. This result is not a surprise, given that we are considering several conflicting 
objective functions. 

Table 2. Classification of solutions according to dominance metrics 

Network Scenario DMMA2 DM-MMA I Eq Network Scenario DMMA2 DM-MMA I Eq 

Low 32.50 5.50 50.50 11.50 Low 8.50 2.50 4.00 85.00 
High 11.33 17.67 57.33 13.67 High 9.33 7.67 1.00 82.00 Telstra 

Saturation 26.00 8.75 48.00 17.25
Exodus 

Saturation 6.50 12.00 10.25 71.25 
Low 3.00 11.50 2.50 83.00 Low 11.50 4.50 5.50 78.50 
High 3.67 16.33 0.67 79.33 High 2.67 10.33 1.00 86.00 Sprintlink 

Saturation 21.50 11.75 14.25 52.50
Abovenet

Saturation 11.75 12.50 22.50 53.25 
Low 7.50 13.00 3.00 76.50 Low 0.50 34.50 0.50 64.50 
High 21.00 12.67 3.33 63.00 High 2.33 27.67 0.33 69.67 Ebone 

Saturation 7.50 10.75 29.25 52.50

NTT 

Saturation 5.50 22.50 2.75 69.25 

Low 7.00 13.50 3.00 76.50 Low 4.50 9.50 6.50 79.50 
High 2.33 0.00 3.67 94.00 High 0.67 10.33 0.00 89.00 Tiscali 

Saturation 9.25 0.75 28.50 61.50

NSF 

Saturation 8.00 15.50 2.75 73.75 

 
The percentage of multicast groups routed by a single tree is given in Table 3. We 

should clarify that M-MMA solutions not always use multitree, given that one tree 
may transport the whole information φ. In many cases, both algorithms found the 
same unitree solution. Multitree solution is used only when it is clearly better than 
unitree. This is the main reason why M-MMA could find better global solutions. 
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Actually, a mean of 63.2% of the best solutions had only one tree, and M-MMA is 
able to find those solutions, just as MMA2. However, in several opportunities the 
best solution for a given situation is multitree and therefore, only M-MMA is able to 
find it, making clear why M-MMA outperforms MMA2.  

Finally, table 4 gives an idea about multitree performance considering  the per-
centage of rejected groups for lack of link capacity. This result illustrates that        
M-MMA solutions fulfil the Traffic Engineering purpose, using load-balancing 
techniques in order to optimize network resources, and therefore, accommodating 
more traffic than a purely unitree approach like MMA2. 

Table 3. Percentage of multicast   Table 4. Percentage of groups rejected 
groups routed by a single tree  for lack of link capacity for both algorithms 

 

 

 

7   Conclusion and future work 

This paper presents the M-MMA algorithm, which is able to solve for the first time 
the GMM-model in a dynamical environment, considering multitree. The proposed 
algorithm treats the multiobjective problem of multicast routing in a network,  
splitting traffic demand into several trees (multitree context) to optimize network 
resource utilization. To better accomplish the optimization goal, M-MMA proposes a 
local optimization procedure that finds better solutions improving the relative 
amount of information to be transmitted through each tree. 

Results obtained by simulations on dynamical environments where traffic de-
mands come one after another show that no studied algorithm is clearly dominant. In 
fact, many times the best solution under the given policy had only one tree; however, 
the best solution for a given situation is sometimes a multitree and therefore, only 

% Rejected by Network Scenario 
MMA2 M-MMA 

Low 0.00 0.00 
High 5.67 5.67 Telstra 

Saturation 37.75 35.75 
Low 0.00 0.00 
High 0.33 0.00 Sprintlink

Saturation 14.00 9.00 
Low 0.00 0.00 
High 2.00 2.00 Ebone 

Saturation 27.00 27.00 
Low 0.00 0.00 
High 3.00 0.00 Tiscali 

Saturation 28.50 7.75 
Low 0.00 0.00 
High 0.00 0.00 Exodus 

Saturation 10.25 10.00 
Low 0.00 0.00 
High 0.00 0.00 Abovenet

Saturation 22.00 19.50 
Low 0.00 0.00 
High 0.33 0.00 NTT 

Saturation 2.50 1.50 
Low 0.00 0.00 
High 0.00 0.00 NSF 

Saturation 1.75 1.25 

Network Scenario % 
Low 93.50 
High 91.67 Telstra 

Saturation 58.25 
Low 53.00 
High 85.00 Sprintlink 

Saturation 83.75 
Low 46.00 
High 68.33 Ebone 

Saturation 57.25 
Low 82.50 
High 82.00 Tiscali 

Saturation 83.00 
Low 41.50 
High 53.00 Exodus 

Saturation 60.25 
Low 50.50 
High 77.33 Abovenet 

Saturation 74.50 
Low 25.00 
High 28.33 NTT 

Saturation 46.50 
Low 62.00 
High 50.00 NSF 

Saturation 42.00 
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M-MMA is able to find it. As a consequence, M-MMA is able to accommodate more 
traffic demand under a saturated scenario. For further study, we plan to consider 
simultaneous routing of several multicast requests in optical networks.  
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