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Abstract. This work studies the solution space topology of the Travel-
ing Salesman Problem or TSP, as a bi-objective optimization problem.
The concepts of category and range of a solution are introduced for the
first time in this analysis. These concepts relate each solution of a popu-
lation to a Pareto set, presenting a more rigorous theoretical framework
than previous works studying global convexity for the multi-objective
TSP. The conjecture of a globally convex structure for the solution
space of the bi-criteria TSP is confirmed with the results presented in
this work. This may support successful applications using state of the
art metaheuristics based on Ant Colony or Evolutionary Computation.
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1 Introduction

Metaheuristics are a class of optimization algorithms that today constitute one
of the best options to solve very complex problems. These algorithms try to
combine basic heuristic methods in higher level frameworks aimed at efficiently
and effectively exploring a search space [1].

The research in the field of metaheuristics has evolved on the basis of trial
and error [2], often motivated by the competition for improving the best known
solutions for given problems, and not by identifying the reasons for the success
and failure of these algorithms.

The Traveling Salesman Problem or TSP has been used as a benchmark
problem for the study of many metaheuristics. The topology of the single-
objective TSP has been study in [3–6], and the three-objective TSP in [2], for
specific instances. In general, all these results suggest that the solution space
has a globally convex structure.

Global Convexity is not convexity in the strict sense [2], but may be used to
denote the empirical observation that the best local optima are gathered in a
small part of the solution space, which hopefully includes the global optimum.
Metaheuristics exploit this by concentrating their search in that part of the
solution space [2].
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This work studies the solution space topology of the bi-objective TSP in a
more practical way than the studies carried out in [2], by means of two new
metrics, category and range of a solution. The former, relates a solution with
the number of solutions that dominate it; the latter, establishes a hierarchy in
the solution space. The whole solution space was studied for random instances
with 7, 8, 9 and 10 cities. Then, subsets of the solution space ware analyzed
for larger problems with 100 and 150 cities. It is interesting to mention that
when global convexity exists, it may be exploited in metaheuristics for multi-
objective combinatorial optimization [2]. Global convexity can be used to design
good algorithms or to explain the reason of success of well known metaheuristics
that make good use of this property, like Ant Colony Optimization (ACO) and
Evolutionary Algorithms (EA) [7].

The remainder of this work is organized as follows. Section 2 presents a
general definition of a multiple objective problem. The multi-objective TSP is
presented in section 3. Global convexity is described in section 4. The theo-
retical framework and experimental results are explained in section 5. Finally,
conclusions and future work are left for section 6.

2 Multi-Objective Optimization Problems

A general Multi-Objective Optimization Problem (MOP) includes a set of n
decision variables, k objective functions, and m restrictions. Objective functions
and restrictions are functions of decision variables. This can be expressed as:

Optimize y = f(x) = (f1(x), f2(x), . . . , fk(x))
Subject to γ(x) = (γ1(x), . . . , γm(x)) ≥ 0
where x = (x1, x2, . . . , xn) ∈ X is the decision vector, and

y = (y1, y2, . . . , yk) ∈ Y is the objective vector

X denotes the decision space while Y is the objective space. Depending on the
problem, “optimize” could mean minimize or maximize. The set of restrictions
γ(x) ≥ 0 determines the set of feasible solutions Xf ⊆ X and its corresponding
set of objective vectors Yf ⊆ Y. A multi-objective problem consists in finding
x that optimizes f(x). In general, there is no unique “best” solution but a
set of solutions, none of which can be considered better than the others when
all objectives are considered at the same time. This comes from the fact that
there can be conflicting objectives. Thus, a new concept of optimality should
be established for MOPs. Given two decision vectors u,v ∈ X:

f(u) = f(v) iff ∀i ∈ 1, 2, ..., k : fi(u) = fi(v)
f(u) ≤ f(v) iff ∀i ∈ 1, 2, ..., k : fi(u) ≤ fi(v)
f(u) < f(v) iff f(u) ≤ f(v) ∧ f(u) 6= f(v)

Then, in a minimization context, they comply with one of three conditions:
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u � v (u dominates v), iff f(u) < f(v)
v � u (v dominates u), iff f(v) < f(u)
u ∼ v (u and v are non-comparable), iff u � v ∧ v � u

Alternatively, u B v will denote that u � v or u ∼ v. A decision vector x ∈
Xf is non-dominated with respect to a set V ⊆ Xf iff: x B v, ∀v ∈ V .
When x is non-dominated with respect to the whole set Xf , it is called an
optimal Pareto solution; therefore, the Pareto optimal set Xtrue may be formally
defined as: Xtrue = {x ∈ Xf : x is non-dominated with respect to Xf}. The
corresponding set of objective vectors Ytrue = f(Xtrue) constitutes the Optimal
Pareto Front.

A solution z is attainable if there exists a solution x ∈ Xf such that z =
f(x). The set of all attainable solutions is denoted as Z. The ideal solution z∗,
is defined as z∗ = (min f1(x), . . . ,min fk(x)).

3 The Multi-Objective TSP

Given a complete, weighted graph G = (N,E, d) with N being the set of nodes,
E being the set of edges fully connecting the nodes, and d being a function that
assigns to each edge 〈i, j〉 ∈ E a vector dij , where each element corresponds to
a certain measure (e.g. distance, cost) between i and j, then the multi-objective
TSP (MOTSP) [8] is the problem of finding a “minimal” Hamiltonian circuit
of the graph, i.e., a closed tour visiting each of the n = |N | nodes of G exactly
once, where “minimal” refers to the notion of Pareto optimality [8]. In this
study, we consider symmetric problems, i.e. dij = dji for all pairs of nodes i, j.

We will consider the bi-objective TSP:

Minimize y = f(x) = (y1 = f1(x), y2 = f2(x))
subject to f(x) > 0
where x = (〈1, 2〉, 〈2, 3〉, . . . , 〈n− 1, n〉, 〈n, 1〉) ∈ X
and y = (y1, y2) = (f1(x), f2(x)) ∈ Y

where f1 and f2 could be considered as the length of the tour, and the time
required to traverse it respectively.

We will measure similarity of two solutions x, x′ by the number of common
edges 〈i, j〉 ∈ x,x′. On the contrary, the distance δ(x,x′) is defined as the
number of non-common edges, i.e. n minus the similarity.

4 Global Convexity

The structure of the single-objective TSP has been studied by Boese et al. [3,4].
Their results indicate that the cost surface exhibits a globally convex structure,
where good solutions are together in a small region of the search space, and the
best solutions are located centrally with respect to the others.
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In a minimization context, Boese suggested an analogy with a big valley
structure, in which the set of local minima appears convex with one central
global minimum [4]. Even though there is no standard definition of global con-
vexity, figure 1 gives an intuitive picture of a globally convex structure.

Fig. 1. Intuitive picture of the big valley or globally convex solution space structure

The global convexity idea is based on two assumptions [2]:

– Convexity: Local optima are gathered in a relatively small region of the so-
lution space.

– Centrality: The best local optima are located centrally with respect to the
population of local optima.

If both assumptions are valid, we should also expect that local optima are gath-
ered in a small region close to the best local optimum [2]. Besides, any assess-
ment of global convexity only makes sense once a topology has been established
in the solution space [2].

Global Convexity has also been studied by Borges and Hansen in [2] for the
three-objective TSP, by means of scalarization functions. These results were
based on observed behavior rather than on theoretical analysis, and they are not
very practical. In fact, Borges and Hansen reduced the multi-objective problem
to a single-objective one [2], loosing several characteristics of a truly multi-
objective problem, whose theoretical solution is a whole Pareto set and not an
ideal solution which is not attainable in practice. Therefore, this work introduces
truly multi-objective concepts as category and range, trying to achieve a more
general multi-objective framework. This generalization allows a more rigorous
analysis of a MOP for any number of objective functions or measurement units.

5 Topological Analysis of the Solution Space

Boese used the length of a tour to study the quality of a solution [4], what is
completely valid in a single-objective context. For a MOP, Borges and Hansen
proposed the use of scalarization functions that reduce the multi-objective prob-
lem to a single-objective one [2].
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In what follows, the concepts of category and range of a solution are pre-
sented for the first time as quality metrics, to allow a further topological analysis
of the bi-objective TSP.

A population P = {x1,x2, . . . ,x|P |} is defined as a set of valid solutions
xi ∈ Xf of the bi-objective TSP, with cardinality |P |.

Definition 1. Let P ⊂ Xf be a population, and x ∈ P a solution. The category
of a solution x in a population P is defined as:

cat(x, P ) = |{u ∈ P : u � x}|

Then, the category of the solution x is the number of solutions in P that domi-
nates x. Therefore, a solution of the Pareto front will always have a 0 category,
i.e. if u ∈ Xtrue then cat(u,Xf ) = 0.

Definition 2. Let P ⊂ Xf be a population. The non-dominated frontier of P
is defined as:

NF(P ) = {u ∈ P : cat(u, P ) = 0}

If P = Xf then NF(P ) = Xtrue.

Definition 3. Let P ⊂ Xf be a population, and x ∈ P a solution. The range
of a solution x in a population P , denoted as rng(x, P ), is defined according to
the following algorithm:

if x ∈ NF(P ) then rng(x, P ) = 0
else rng(x, P ) = 1 + rng(x, P ′) where P ′ = P −NF(P )

From now on, the use of the parameter P will be omitted from the range
and category notation. Therefore, they will be denoted as rng(x) and cat(x)
respectively. The parameter P is left only for ambiguous cases.

A definition of distance is now presented for the study of global convexity
in the bi-objective TSP.

Definition 4. Let P ⊂ Xf be a population, and x ∈ P a solution. The mean
distance of a solution x to a population P is defined as:

δ(x, P ) =
1

|P | − 1

|P |∑
i=1

δ(u,x) ∀u ∈ P.

This paper is inspired in Boese’s approach [4], where different solutions of an n
city problem are saved in a set P ; consequently, each solution x has:

– A category cat(x).
– A range rng(x).
– A mean distance to the other solutions of P denoted as δ(x, P ).
– A distance to the non-dominated frontier denoted as δ(x,NF(P )) (defined

in the next section).
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This work is divided in two parts. For the first part, small random instances
were thoroughly analyzed, and for the second part, analyses based on larger
instances from TSPLIB1 were made.

5.1 Exhaustive Study of the Solution Space

The study is based on random generated instances with 7, 8, 9 and 10 cities,
named litAB7, omiAB8, encAB9 and asuAB10. These problems are described
in [9].

Due to the presence of multiple optimal solutions, a definition of distance
to the non-dominated frontier is needed.

Definition 5. Let P ⊂ Xf be a population, and x ∈ P a solution. The distance
of a solution x to the non-dominated frontier of P is defined as:

δ(x,NF(P )) = min{δ(x,x∗
i ) : x∗

i ∈ NF(P )} (1)

The e best solutions of P will be denoted as P(e); e.g. P(100) denotes the set
of the best 100 solutions of P , i.e., the 100 solutions with the smallest category.

For the calculations, an exhaustive search was made. The obtained popula-
tion is the whole solution space for an n city problem, i.e. P = Xf , therefore,
|Xf | = |P | = (n−1)!

2 , and, NF(P ) = Xtrue.
For each solution x ∈ P , correlations between the following variables were

calculated:

– the distance to the non-dominated frontier δ(x,NF(P )) and the category of
a solution cat(x), denoted as ρ(cat(x), δ(x,NF(P )));

– the mean distance to the population δ(x, P ) and the category of a solution
cat(x) denoted as ρ(cat(x), δ(x, P ));

– the distance to the non-dominated frontier δ(x,NF(P )) and the mean dis-
tance to the population δ(x, P ) denoted as ρ(δ(x, P ), δ(x,NF(P )));

– the mean distance to the population δ(x, P ) and the range of a solution
rng(x) denoted as ρ(rng(x), δ(x, P ));

– the distance to the non-dominated frontier δ(x,NF(P )) and the range of a
solution rng(x) denoted as ρ(rng(x), δ(x,NF(P )));

– the range and category of a solution denoted as ρ(rng(x), cat(x)).

A summary for these values is shown in tables 1 to 4, and the figures for these
correlations can be found in [9].

These results suggest that range and category are very similar quality met-
rics, with correlations between them larger than 0.9.

High values can be observed for the correlations ρ(cat(x), δ(x, P )) and
ρ(rng(x), δ(x, P )), which suggests a concentration of very good solutions in
the center of the solution space, satisfying the centrality assumption of a
globally convex structure. Also, the correlations ρ(cat(x), δ(x,NF(P ))) and

1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Table 1. Correlations for the problem litAB7

P P (|P | − 1) P ( |P |
2 ) P ( |P |

4 )

ρ(cat(x), δ(x, P )) 0 0.602793 0.761135 0.659006
ρ(cat(x), δ(x,NF(P ))) 0.767441 0.763554 0.548112 0.585267
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.582333 0.633253 0.706702
ρ(rng(x), δ(x, P )) 0 0.628991 0.752562 0.661246
ρ(rng(x), δ(x,NF(P ))) 0.786593 0.783295 0.567543 0.633579
ρ(rng(x), cat(x)) 0.960048 0.960550 0.937163 0.933828

Table 2. Correlations for the problem omiAB8

P P (|P | − 1) P ( |P |
2 ) P ( |P |

4 )

ρ(cat(x), δ(x, P )) 0 0.645277 0.868166 0.782142
ρ(cat(x), δ(x,NF(P ))) 0.774954 0.774225 0.627201 0.524996
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.549804 0.686872 0.555586
ρ(rng(x), δ(x, P )) 0 0.644026 0.929499 0.853578
ρ(rng(x), δ(x,NF(P ))) 0.810660 0.810222 0.678969 0.594514
ρ(rng(x), cat(x)) 0.976814 0.976843 0.973864 0.959215

Table 3. Correlations for the problem encAB9

P P (|P | − 1) P ( |P |
2 ) P ( |P |

4 )

ρ(cat(x), δ(x, P )) 0 0.572255 0.825523 0.697679
ρ(cat(x), δ(x,NF(P ))) 0.641862 0.641802 0.435708 0.409532
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.329447 0.478431 0.371982
ρ(rng(x), δ(x, P )) 0 0.564819 0.894474 0.759983
ρ(rng(x), δ(x,NF(P ))) 0.672059 0.671998 0.483163 0.492397
ρ(rng(x), cat(x)) 0.971607 0.971621 0.974710 0.971266

Table 4. Correlations for the problem asuAB10

P P (|P | − 1) P ( |P |
2 ) P ( |P |

4 )

ρ(cat(x), δ(x, P )) 0 0.508309 0.830280 0.734061
ρ(cat(x), δ(x,NF(P ))) 0.712957 0.712944 0.536178 0.488927
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.392366 0.577878 0.442818
ρ(rng(x), δ(x, P )) 0 0.493534 0.899061 0.803484
ρ(rng(x), δ(x,NF(P ))) 0.750817 0.750809 0.583105 0.533937
ρ(rng(x), cat(x)) 0.970935 0.970937 0.976167 0.975501

ρ(rng(x), δ(x,NF(P ))), indicate that these solutions are gathered in a rela-
tively small region of the solution space, satisfying the convexity assumption.

As both assumptions are fulfilled, it is expected that these solutions are
close to the Pareto front, which is consistent with a globally convex structure
conjecture.

The correlations for the bi-objective TSP do not present the high values
obtained by Boese for the single-objective case [4]. The reason for this fact is
due to the existence of a whole set of Pareto solutions. As a consequence, non-
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Pareto solutions could be more central in the solution space than other Pareto
solutions.

Larger problems are analyzed in the next section using the same metrics
with subsets of the solution space.

5.2 Study of a Subset of Solutions

This analysis was based on the TSPLIB instances kroAB100, kroCD100,
kroAD100, kroBC100 and kroAB150. From each of these bi-objective TSPs,
n2 random samples were taken. The local search algorithm 2-Opt was used for
the optimization of each sample set, achieving populations containing local op-
tima solutions. This search strategy was chosen because it presents a simple
neighborhood structure, and allows the study of local optima distribution in
the solution space.

The methodology of the analysis remains the same, using subsets of the
solution space instead of considering the whole solution space. The correlations
obtained are shown in table 5.

Table 5. Correlations for the instances kroAB100, kroCD100, kroAD100, kroBC100,
kroAB150

kroAB100 kroCD100 kroAD100 kroBC100 kroAB150
ρ(cat(x), δ(x, P )) 0.616596 0.596558 0.603098 0.589122 0.571318
ρ(cat(x), δ(x,NF(P ))) 0.396173 0.401700 0.391263 0.396632 0.384648
ρ(δ(x, P ), δ(x,NF(P ))) 0.613169 0.626019 0.611728 0.653360 0.633580
ρ(rng(x), δ(x, P )) 0.639641 0.628951 0.645090 0.617764 0.606404
ρ(rng(x), δ(x,NF(P ))) 0.432760 0.441982 0.449073 0.437721 0.423266
ρ(rng(x), cat(x)) 0.945914 0.941865 0.937078 0.941890 0.938438

The results for the problem kroAB100 are shown in figure 2. The figures
for the other problems can be found in [9]. Correlations between range and
category, still maintain a value larger than 0.9, which confirms their similarity,
although range presents better results in the whole study.

A concentration of the best solutions centrally with respect to the population
is observed in figures 2.a and 2.d. Despite low correlations in the previous figures
(around 0.6), figure 2.c shows that solutions located centrally are closer to
the non-dominated frontier, and suggests the existence of a globally convex
structure. The same results were obtained for the rest of the studied instances.

6 Conclusions and Future Work

The concepts of category and range proved to be very effective quality metrics
for the bi-objective TSP, and the generalization of these concepts can be easily
made for any instance of the MOTSP. Besides, they can be used in any MOP
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(a) ρ(cat(x), δ(x, P )) = 0.616596 (b) ρ(cat(x), δ(x,NF(P ))) = 0.396173

(c) ρ(δ(x, P ), δ(x,NF(P ))) = 0.613169 (d) ρ(rng(x), δ(x, P )) = 0.639641

(e) ρ(rng(x), δ(x,NF(P ))) = 0.432760 (f) ρ(cat(x), rng(x)) = 0.945914

Fig. 2. Population of 10,000 optimized solutions for the instance kroAB100

without definition changes. Although these concepts seem to be very similar,
range showed better results.

Category, range, mean distance to the population and distance to the non-
dominated frontier experimentally demonstrated to be correlated, showing the
topological characteristic of global convexity. These metrics could be used for
the study of global convexity in other MOPs, where metaheuristics, as ACO or
EA, have shown to be very efficient, and for the creation of new metaheuris-
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tics that could exploit this type of structure. However, since the results were
obtained experimentally, it is not certain that this structure holds for every
instance of the bi-objective TSP. Nevertheless, for the single-objective case, no
instance was found without a globally convex structure [6].

A problem with a known global convexity structure will allow us to limit
the search to a smaller solution area, and from there, it will be possible to use
another appropriate algorithms to achieve better approximations to the Pareto
set.

There is a lot to do in the study of global convexity, like the creation of meta-
heuristics based on the exploitation of this structure, the study of instances with
correlated objectives, and the use of another kind of neighborhood structure
(different than 2-Opt). Also, it can be considered the development of a formal
theory for global convexity, and the identification of globally convex problems.
Just [3,4,6] refers to the subject of global convexity in the TSP, and [2] for the
MOTSP.
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9. M. Villagra, B. Barán, and O. Gómez, Convexidad Global en el Problema
del Cajero Viajante Bi-Objetivo, Centro Nacional de Computación, Universi-
dad Nacional de Asunción, Technical Report No. 001/05, 2005 (unpublished);
http://www.cnc.una.py.


