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Abstract— Recognized the multiobjective nature of multicast 

traffic engineering, this paper compares several Multiobjective 
Evolutionary Algorithms (MOEAs) to solve that problem and 
proposes several policies to choose a good solution from a Pareto 
set in a dynamical environment. Experimental results show that 
most MOEAs may suit for the task. Moreover, the chosen policy 
is the main factor to define performance in a dynamical 
environment. Therefore, seven different policies are proposed 
and tested in a dynamical environment, proving that the policy of 
choosing the closest solution to the origin provides excellent 
trade-off values. 
 

Index Terms—Multicast, Multiobjective Evolutionary 
Algorithms, Pareto Dominance, Traffic Engineering. 

 

I. INTRODUCTION 
ULTICAST consists of concurrently data transmission 
from a source to a subset of all possible destinations in a 
computer network [1]. In recent years, multicast routing 

algorithms have become more important due the increased use 
of new point to multipoint applications, such as radio and TV, 
video on-demand (VoD) and e-learning. For these 
applications, the delay from a source to each destination 
becomes a variable of vital importance in audio and/or video 
multicast transmissions [2]. 

For traffic engineering, other important objectives are taken 
into account in the optimization of multicast routing algorithm 
as maximum link utilization and the "cost" of the tree, being 
understood by "cost" other metrics to be minimized like: hop 
count, total bandwidth consumption, etc. Therefore, the 
multicast traffic engineering problem has been recently 
recognized as a multi-objective optimization problem [1]-[10]. 

Given that multicast traffic engineering (MTE) may be 
treated as a multi-objective problem (MOP), it is worth 
mention that Multi-Objectives Evolutionary Algorithms 
(MOEAs) are already recognized as well suited to solve that 
kind of problems [11], [12]. In fact, each reviewed paper that 
recognizes MTE as a MOP [1]-[9] proposes some kind of 
MOEA, finding a complete set of Pareto solutions in a single 
execution [11]. 
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As already stated, MTE problem has been recently studied 
as a MOP in several publications. Thus, routing algorithms for 
multiobjective multicast are presented in [1], [7], [8], 
considering different sets of objective functions as: tree cost, 
maximum end-to-end delay, average delay and maximum link 
utilization. These works were later improved with another 
MOEA that uses a different codification [9]. An interesting 
approach considering multi-trees is presented in [10], while a 
first publication in a wireless environment was found in [4]. 
Quality of Service (QoS) considerations in a MOP context 
was considered in [5], [6]. These multiobjective proposals for 
multicast routing are generalized in a GMM model for 
Dynamic Multicast Groups in [2]. 

Given that different MOEAs were already used to solve the 
MTE problem, the present work first compares four of the 
most promising multiobjective evolutionary algorithm: 

• SPEA (Strength Pareto Evolutionary Algorithm)[13]; 
• SPEA2 (SPEA, version 2) [14]; 
• NSGA2 (Nondominated Sort Genetic Algorithm 2)[15]; 
• cNSGA2 (Controlled NSGA2)[16]; 

Later, policies for the selection of good solutions of a 
Pareto set are proposed for a dynamical environment. 

The rest of the document is organized as follows: Section II 
presents the mathematical formulation of the problem and a 
brief introduction to evolutionary algorithms (EAs), as well as 
the codification used in this work. Section III summarizes an 
algorithm for generation of testing scenarios. The proposed 
policies for selecting solutions are presented in Section IV. 
Experimental results are discussed in Section V, while the 
final conclusions and future works are left for Section VI. 

II. PROBLEM FORMULATION  

A. Mathematic model 

A network is modeled as a direct graph ),( EVG = , 
where V is the set of nodes and E is the set of links. Let 
(i,j)∈E be the link from node i to node j and zij, cij, dij and tij ∈ 
ℜ+ be its capacity, cost per bps, delay and current traffic, 
respectively. Let’s denote s ∈ V as a source, N ⊆ V - {s} as the 
set of destinations, and φ ∈ℜ+ as the traffic demand (in bps) 
of a multicast request. Let T(s,N) represent a multicast tree 
with s as source node and N as destination set. At the same 
time, let pT (s, n) denote a path that connects the source node s 
with a destination node n ∈ N. Finally, let d(pT(s, n)) represent 
the delay of the path  pT (s, n) given by the sum of the link 
delays that conform the path, i.e., 
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Using the above definitions, a multicast routing problem for 
traffic engineering may be stated as a MOP that tries to find 
the multicast tree T(s,N) that simultaneously minimize the 
following objectives: 
 

1- Maximum link utilization of the tree: 
 

{ }ijijTjiT ztMax /)(),( +=
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φα . (2) 
 

2- Cost of the tree: 
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3- Average delay:  
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subject to link capacity constraint:  
 

ijij zt ≤+φ  ; ( ) ( )NsTji ,, ∈∀ , (5) 
 

where | | denotes cardinality. 
 

B. Proposed multiobjective evolutionary algorithms 
The four MOEAs were implemented as they were proposed 

in [13]-[16] and following the scheme proposed in [9]. They 
begin with a set of random configurations called initial 
population P. Each individual Tp in the population represents 
a potential solution of the problem. At each generation, the 
individuals are evaluated using an adaptability function. Based 
on this value, some individuals, called parents, are selected. 
The probability of selection of an individual is related to its 
adaptability. Then, a number of genetic probabilistic operators 
are applied to the parents to produce new individuals that will 
be part of a new population. The process continues until a stop 
criterion is satisfied. 

III. DYNAMIC TESTING SCENARIOS  
Several MOEAs were already compared in a static 

environment [3]; however, the present work presents an 
empirical comparison of MOEAs and selection policies in 
dynamic scenarios. The network used in the simulations was 
the NTT-net [14], which consists of 55 nodes and 144 links. 
The values of zij, cij and dij were taken from [1]. Under these 
conditions, Ψ traffic requests were generated, simulating a 
dynamic situation in which they arrive one after another. The 
demands, in bps, were set between a minimum φmin and a 
maximum φmax. Similarly, the sizes of the groups were set 
between |N|min and |N|max. The algorithm to generate multicast 
groups is shown in Fig. 1. 

 

 
Fig. 1.  Algorithm to create Ψ random multicast groups. 

 

The function groupGenerator generates a multicast group 
with a destination size between |N|min and |N|max; then, 
random(unif, 0, 2000) gives the arrival time of the group, with 
a uniform distribution between 0 and 2000 seconds. The 
duration of each group was exponentially distributed, with an 
average of 60 seconds. Finally, the traffic demand is set to a 
value between φmin and φmax.   

The following two figures were defined, in order to have an 
idea of the traffic in the network (a) Accumulated traffic 
demand: 
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and (b) its average over the simulated time, denoted as φ , 
where M(t) is the number of multicast group in the network at 
time t and φi the traffic demand of each multicast group i. 

In order to compare the behavior of different MOEAs under 
several traffic loads over the network, three scenarios were 
defined: (a) low load, (b) high load and (c) saturation. Table I 
summarizes the parameter values used to generate each 
scenario. 

 

TABLE I. PARAMETERS USED IN EACH SCENARIO. 
Parameters  

Scenarios 
 

φ  Ψ  minN  maxN  
minφ  maxφ  

Low load 1.208 200 4 10 0,1 0,2 
High load 5.050 300 10 25 0,2 0,8 
In saturation 7.463 400 10 35 0,2 0,8 

 
 

Fig. 2 shows the accumulated and average traffic demand of 
the three proposed scenarios. It can be appreciated that the 
low load scenario is pretty relaxed from the traffic point of 
view, while the high load scenario tests MOEAs under a much 
greater load than the previous scenario. In addition, each 
multicast group of the high load scenario consists of a greater 
number of destination nodes, which produces a higher 
bottleneck in the network. Finally, in the saturation scenario, 
the traffic demand is by far the greatest of the three scenarios. 
Moreover, the number of multicast group and the size of each 
one were set to a larger value than the previous ones to 
saturate the network with traffic, making too difficult for the 
network to route the whole traffic. Clearly, in the saturation 
scenario, some multicast groups are not routed, given the lack 
of network resources; therefore, the average number of 
rejected groups may be considered as an important metric to 
compare different algorithms and policies. 

1    for i = 1 to  Ψ 
2       group(i)  =    groupGenerator(|N|min, |N|max);    
3         Tini(i)       =    random(unif, 0,2000);  
4     Tfin(i)       =   Tini(i) +  random(exp, 0, 60);  
5     φ(i)         =   random(unif, φmin, φmax);  
6                   end for 
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Fig. 2. Accumulated and average traffic demand of the three scenarios used in 
the simulations;  (a) low load, (b) high load, and (c) saturation.  

IV. POLICIES OF SELECTION  
From the fact that MOEAs provide a set of Pareto solutions, 

a mechanism is needed to choose a single alternative at each 
time a multicast group enters the network. Therefore, an 
interesting question arises. Which alternative of the Pareto set 
is the most suitable solution, being that all solutions are non-
comparable to each other?. To find an answer, four selection 
policies are summarized in Table II. 
 

A. Semi-static selection. 
Considering the objective functions (αT, CT, DA), this policy 

first defines an acceptable upper bound (αTm, CTm, DAm). Table 
III summarizes the eight possible situations, indicating with a 
“1” that a given objective function exceeded the a priori upper 
bound, i.e., the value of that objective is not satisfactory. On 
the contrary, a “0” represents that an objective is acceptable, 
i.e., αT ≤ αTm, CT ≤ CTm or DA ≤ DAm. Clearly, at each decision 
time, those objectives with values larger than their upper 
bounds must have the highest priorities. 

 

 
TABLE II. SUMMARY OF THE PROPOSED SELECTION POLICIES. 

   Details 
Policy Name Symbol Primary Secondary  Third  

      objective objective objective 
  S1 αC αT CT DA 

Static* S2 Cα  CT αT DA 
  S3 α DA  αT DA CT 
  S4 DAα  DA αT CT 

   SE1, 
    

SE SE2, 
    

Semi- 
Static 

   SE3 

An acceptable upper bound   (αTm, CTm, 
DAm) is defined. With this parameter, the 
policy   dynamically   selects   the   most 
advisable solution, giving priorities to 
objectives that do not satisfy the desired 
operation point. Three different upper 
bounds were tested (SE1, SE2 and SE3). 

Worse 
Acceptable 

Case 
DP 

A line between the  origin of coordinates 
and  the  point (αTm, CTm, DAm) is 
considered. The nearest solution to that 
line is chosen. That way,   the 3 objectives 
may be  simultaneously optimized, as 
shown in Fig. 3(a). 

 Dynamic

Origin of 
coordinates 

 
DC 

 

This   dynamic   policy selects  the closest 
solution  to the origin of coordinates, as 
shown in Fig. 3(b).  

*A static selection uses a "lexicographical order" [4]. 
 

The problem arises when there are more than two solutions 
with the same priority, i.e., there are two (or three) objectives 
that have not reached their upper limit or they have exceeded 
their upper bound. In these cases, it is needed a way to break 
the tie among objectives. Table III presents the criteria 
considered for this work. αc, Cc and Dc are the time-depended 
values of the objective functions considering the whole 
network, as defined in equations (7) to (9).  

 
TABLE III. POSSIBLE SITUATIONS WITH A SEMI-STATIC ALGORITH. 

Case αT CT DA Criteria 

1 0 0 0 
αc/αTm = a; Cc/CTm = b; Dc/DAm = c. 
The greatest value among a, b and c 
defines the primary objective. 

2 0 0 1 
3 0 1 0 

4 1 0 0 

The greatest priority is assigned to the 
objective that does not satisfies its 
upper limit. A tie with other objectives 
is broken in the same way as in case 1.  

5 0 1 1 
6 1 0 1 
7 1 1 0 

A lower priority is assigned to the 
objective with “0,” while a tie is broken 
using the same criterion as in case 8. 

8 1 1 1 
The higher value among (1-a), (1-b) and 
(1-c) defines the main objective (see 
case 1.) 
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αc = |V|-1 ∑
∈Eji

ij
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α , (9) 

where M(t) denotes the number of multicast group at time t, 
i
AD  the average delay of group i, |N|i the number of destination 

nodes of group i, i
TC  the cost for group i, and |V|   the number 

of nodes in the network. 
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B. Dynamic selection DP  
 DP selects the nearest solution to the line defined by the 
origin of coordinates and the point (αTm, CTm, DAm). That way, the 
three objectives are simultaneously optimized. The chosen 
point was (07, 13, 115). Fig. 3(a) shows an example with two 
objective functions. 

C. Dynamic selection DC 
DC chooses the nearest solution to the origin of 

coordinates. It is important to note that this policy does not 
have any a priori parameter. Fig. 3(b) shows an example with 
two objective functions.  

 
 
 

 
 
 
 
 

Fig. 3. Dynamic selection, (a) DP and (b) DC. 

V. EXPERIMENTAL RESULTS. 
For each scenario – low load, high load and saturation – ten 
runs were preformed and average values were calculated.  
 

A. Comparison of MOEAs  
The following performance figures were used to compare 
MOEAs: 
 

Average maximum link utilization: 
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Average cost of the trees: 
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Total average delay:  
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where   
αT(w) : maximum link utilization of group w 
CT(w) :  cost of the tree of group w  
  H     : total number of destination nodes. 
 

After computing these metrics for each run, the average 
values in ten runs were calculated (denoted as pα , pC  and pD  
respectively.) Another metric is considered: Na, defined as the 
average number of traffic requests rejected for lack of network 
resources. Tables IV to VI show these metrics for each 
scenario. Note that the performance of each MOEA was quite 
similar to the other ones. It is important to highlight the 
difference between these results and the ones in [3] that only 
compares MOEAs in a static environment, using as 
performance metric the number of calculated Pareto solutions. 
Clearly, the fact that an algorithm finds more Pareto solutions 
does not imply a better performance in dynamic scenarios 
given that only one solution is chosen at a time. In summary, 
the selection of the MOEA to be used is not really relevant, 
given that any good implementation may give satisfactory 
results with a good selection policy.  

 

 The best solution for a certain column. 
The second better solution for a certain column. 

 

TABLE IV. RESULTS FOR SCENARIO 1: LOW  LOAD. 

 Averages  

 pα  pC  pD  Na 

SPEA2 0.11868 20.633 113.2032 0 

SPEA 0.11882 20.633 113.249 0 

CNSGA2 0.11855 20.633 113.1603 0 

NSGA2 0.11855 20.633 113.1424 0 
 

TABLE V. RESULTS FOR SCENARIO 2. HIGH  LOAD. 

 Averages  

 pα  pC  pD  Na 

SPEA2 0.57805 140.2427 115.2895 1 

SPEA 0.57614 140.0172 115.7672 1 

CNSGA2 0.57841 140.0833 115.531 1 

NSGA2 0.57686 140.0906 115.5096 1 
 

TABLE VI. RESULTS FOR SCENARIO 3. SATURATION. 

 Averages  

 pα  pC  pD  Na 
SPEA2 0.77147 222.7509 114.7587 12.7 

SPEA 0.76702 223.1221 115.1808 12.6 

CNSGA2 0.76814 223.3169 114.8438 12.4 

NSGA2 0.7675 223.6509 114.8642 12.5 
 

B. Comparison among selection policies 
 

Tables VII to IX show the results obtained by each policy of 
selection. The columns labeled with maximum are the average 
of the maximums; i.e., the average of the maximums in ten 
runs is computed for each parameter. Note that static policies 
outperformed the other policies in the primary objective, but 
are beaten in the other objectives. It can be also noted that, 
although the seven policies accepted all traffic request in the 
low load scenario, no one was able to route all the traffic 
requests in the other two scenarios. Clearly, static policy with 
delay objective as primary objective had by far the worst 
performance considering Na. The following notation is used 
for the last tables. 
 

 The best solution for a certain column. 
 The second better solution for a certain column. 
 The third better solution for a certain column. 

 

TABLE VII. EXPERIMENTAL RESULTS FOR SCENARIO 1: LOW LOAD. 

                             Averages                     Maximums   

 pα  pC  pD  Na α  C  D  Na 

AT Dα  0.09877 25.7748 121.843 0 0.196 54.55 203.828 0 

αC  0.11865 20.6330 113.189 0 0.233 41.8 170.098 0 

Cα  0.09528 23.6273 128.947 0 0.175 50.325 231 0 

αAD  0.14108 25.2554 103.48 0 0.267 52.65 146.425 0 

SE1 0.14113 25.2465 103.508 0 0.267 52.725 146.306 0 

SE2 0.14106 25.2387 103.507 0 0.267 52.75 146.298 0 

SE3 0.14114 25.2584 103.509 0 0.267 52.65 146.369 0 

DP 0.1347 21.0742 107.876 0 0.25 42.7 153.902 0 

DC 0.10278 22.2371 113.971 0 0.2 46.9 165.568 0 
 

d 

F1 

F2 

F1 

F2 

d1 

d2 

No feasible 

 
),,( ammm DCαa) b) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5

TABLE VIII. EXPERIMENTAL RESULTS FOR SCENARIO 2: HIGH LOAD. 

                            Averages                    Maximums   

 pα  pC  pD  Na α  C  D  Na 

αAD  0.66457 167.59 102.71 1.9 1 376.02 145.36 2 

AT Dα  0.51312 166.78 115.04 1 0.933 378.47 183.91 1 

Cα  0.49473 151.11 123.13 1 0.892 337.3 178.19 1 

αC  0.57736 140.10 115.52 1 0.992 308.87 157.69 1 

SE1 0.55270 145.45 116.05 1 0.896 335.9 155.76 1 

SE2 0.59061 150.69 112.13 1 0.925 359.17 147.82 1 

SE3 0.58980 146.60 112.87 1 0.921 342.15 154.88 1 

DP 0.63564 141.70 111.99 1 1 316.2 149.36 1 

DC 0.534 147.63 110.12 1 1 329.1 159.87 1 
 

TABLE IX. EXPERIMENTAL RESULTS FOR SCENARIO 3. SATURATION. 
                            Averages                    Maximums   

 pα  pC  pD  Na α  C  D  Na 

αAD  0.8458 257.45 101.10 22.67 1 404.02 122.6 25 

ATDα  0.7111 259.74 110.70 12.72 1 415.55 137.8 14 

Cα  0.6951 236.80 118.49 12.2 1 385.92 148.2 13.3 

αC  0.7685 223.21 114.91 12.55 1 356.85 141.6 13.3 

SE1 0.7183 232.94 116.88 12.22 1 378.67 143.6 13 

SE2 0.7442 235.65 114.54 12.32 1 386.02 138.2 13 

SE3 0.7474 231.61 115.20 12.15 1 372 139.0 12.8 

DP 0.7889 225.34 113.28 12.5 1 357.6 135.1 13 

DC 0.7404 232.91 107.79 13.2 1 377.5 133.9 14 
 

In order to find a policy with the best trade-off value, it is 
necessary to define a metric that takes into account the three 
objectives in a combined way. Equation (13) defines Y, which 
is used to compare the different selection policies. 
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where 
maxpa , 

maxpC and 
maxpD are the maximum average value of 

each objective obtained in a given scenario; e.g., 
maxpa = 

0,1414 for scenario 1, and a point (0.09677, 25.7748, 
121.843) is mapped to Y= 0.84022. Note that, with this 
criterion, the nearest solution to the point (0, 0, 0) is 
considered the best option. Table X shows the values for each 
solution of Tables VII to IX. While static and semi-static 
policies choose solutions located in extremes of the Pareto 
front, DC policy, with its selection mechanism, allows a trade-
off relation among the three objectives. Hereby, it obtains the 
best performance when metric Y was considered. Moreover, it 
does not need an a priori parameter. 
 

VI. CONCLUSION AND FUTURE WORKS 
This paper presents an empirical comparison among 

MOEAs to solve the MTE problem for computer networks 
and a set of selection policies to choose the most suitable 
solution from the Pareto set in dynamic environments. 
Simulation results show that the four MOEAs obtain quite 
similar performance indicating that any of them may be 

chosen; however, the selection policy is determinant for 
performance. Among the selection policies, the DC criterion 
finds the solution with the best trade-off relation among the 
maximum link utilization, average delay and cost of the tree. 
In summary, the most important key that should be taken into 
account in MTE is the selection policy, rather than the MOEA 
to be implemented. 

In a future work, the authors will considerer a traffic 
engineering scheme using multiple trees, where the data flow 
of a multicast group is transmitted to the destinations through 
several trees. 

 

TABLE X. METRIC  Y   FOR DIFFERENTE SCENARIOS. 
 Low load High Load Saturation Average 

DC 0.82780 0.86048 0.89403 0.86077 

αC  0.84021 0.88201 0.91371 0.87863 

Cα  0.87485 0.88831 0.91406 0.89241 

DP 0.8716 0.90493 0.91954 0.89870 

ADα  0.89114 0.90545 0.92734 0.90797 

SE1 0.931612 0.881902 0.912617 0.908710 

SE3 0.93178 0.893160 0.916774 0.913906 

SE2 0.931323 0.899511 0.918622 0.916485 

αAD  0.931496 0.947951 0.950549 0.94333 
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