
Heuristic Partitioning Algorithm with Partial Overlapping
for a System of Equations Distributed Solution

Benjamín Barán and Diana Benítez

National Computing Center (CNC)- National University of Asuncion (UNA)
San Lorenzo, P.O. BOX 1439

Paraguay

ABSTRACT

Parallel asynchronous implementations of iterative algorithms
in heterogeneous computer environments are becoming a very
convenient choice for solving large scale systems of equations;
however, the usefulness of this approach is limited by the need
of partitioning a large system of equations in smaller
subproblems. To overcome this difficulty, this paper presents a
heuristic technique of 4 phases. It considers the relative
performance of processors during the partitioning process and
recommends partial overlapping of critical unknown when
convenient for the resolution process.

In order to demonstrate the advantage of the proposed method
using partial overlapping, this paper presents a mathematical
analysis of small linear problems and experimental results
using the proposed heuristic algorithm to partition systems of
equations with different dimensions and characteristics.

Keywords: Partition, Decomposition, Iterative Method,
Partial overlapping, Asynchronous Implementations.

1. INTRODUCTION

With the advent of high speed communication technologies,
the aggregate CPU power in a LAN can easily exceed that of a
supercomputer [1]. Therefore, parallel asynchronous
implementations of iterative algorithms in heterogeneous
computer environments are becoming a very convenient choice
for solving large scale systems of equations, specially when
considering advantages such as efficient exploitation of
existing computing resources, cost effectiveness, shorter
convergence time, and easier implementations [2].
Unfortunately, the usefulness of this approach is limited by the
need of partitioning a large system of equations in smaller
subproblems to be solved by individual processors of a
distributed computing environment. This partitioning has
sometimes two conflicting objectives: balanced loading among
processors and good convergence of the resulting iterative
implementation.
A good survey of the partitioning problem may be found in [3],
beginning with the first studies by Carre in the 60’s [4].
However, only during the 90´s this problem has gotten a lot of
attention, being the ε-Decomposition [5] the best known
technique, because of its simplicity by ignoring all data with
values below a given ε during the partitioning process.

However, the ε-Decomposition is not able to control the size
of each subproblem; therefore, it has load balancing problems.
To overcome this difficulty, Vale et al. [6] proposed a heuristic
technique that assures load balancing for parallel
(homogeneous) computers, that was later refined by Barán et
al. [7,8] to assure a load balancing proportional to the relative
processors performance w in a network of heterogeneous
processors. Based on these previous works, the authors propose
to further refine their technique [7,8], using partial overlapping
[9].

This paper is organized as follows. Section 2 presents the
Mathematical Background. Section 3 summarizes the concept
of partial overlapping, while the Heuristic Algorithm is
presented in Section 4. Experimental results are presented in
Section 5 and the concluding remarks are left to Section 6.

2. MATHEMATICAL BACKGROUND

The idea behind the method is to transform a problem, with
difficulties to be solved in parallel, in a new (possibly
expanded) problem that can be efficiently solved using a
heterogeneous distributed computer system. In this context, a
system of m equations with m unknowns is given by:

F y F y() , : , ,= ℜ → ℜ
�

�

�
�
�

�

�

�
�
�

∈ℜ ∈ℜ0
1

 m m

m

m
i=

y

y

y� (1)

The objective of the partitioning method is to find a linear
transformation P, in such a way that:

x Py= (2)

the original problem (1) is transformed into a new system of n
equations (n≥ m):

ΦΦΦΦ ΦΦΦΦ() , : ,x x= ℜ → ℜ =
�

�

�
�
�

�

�

�
�
�

∈ℜ0
1

 n n

n

n
x

x

� (3)

that can be efficiently solved with p processors using any
known parallel method. To do so, (3) should be partitioned
according to [2]:

ΦΦΦΦ
ΦΦΦΦ

ΦΦΦΦ
ΦΦΦΦ()

()

()

, : ,x

x

x

=

�

�

�
�
�

�

�

�
�
�

ℜ → ℜ =
=
�

1

1
�

p

i
n ni i

i

p
n n (4)

with

x

x

x

=

�

�

�
�
�

�

�

�
�
�

1

�

p

, where xi
ni i p∈ℜ ∀ ∈, { ,..., } 1 (5)

Thus, equation (3) may be rewritten as:
ΦΦΦΦ i i p() , { ,..., }x = ∀ ∈0 1 (6)

that may be solved using an iterative method
x G x← () (7)

that can be chosen in such a way that:

G x

G x

G x

G x()

()

()

, ():=

�

�

�
�
�

�

�

�
�
�

ℜ → ℜ
i

p

i
n ni� (8)

In this way, problem (6) can be solved in parallel, by assigning
each subproblem to a different processor that updates xi
according to:

x G xi i← () (9)

That way, each processor i updates its local variable xi using
the best known value of x, which was in part received from the
other processors, and communicates its new value to the others
(in a synchronous or asynchronous way [10]). The iterative
process continues until the global solution is reached.

The synchronous implementation of (7) for processor i may be
written as:

x G xi ik k() (())+ ←1 (10)

where, processor i requires the information of the whole vector
x calculated in the previous iteration to begin the next iteration;
therefore, a dead time normally exists between iterations [2].
To overcome this dead time problem, the following
asynchronous implementation may be used [2]:

},...,{)),(x(G)(x pikk i
ii 1 1 ∈∀=+ (11)

where x i k() represents the value of x, available in processor i
at iteration k; i.e. processor i uses the most updated value of x it
has, at the moment it begins a new iteration, avoiding
synchronization time [10].

The implementation of (11) was studied in [2], where the
following sufficient convergence condition was derived.

THEOREM 1 (Barán et al. [2]): under assumptions of:
uniform bound on delays, uniqueness of solution (in the given
domain) and block-Lipschitz continuity of the operators, the
asynchronous algorithm (11) converges to the solution if:

ρρρρ()H < 1 (12)

where H is the comparison matrix (given by the block-Lipschitz
constants).

�

As a consequence, the spectral radius of the comparison matrix
ρρρρ()H may be used to assure that a given algorithm converges

to the solution; therefore, it will be used to select good

partitions.
In short, the goal of a partitioning algorithm is to find P and to
compute the dimensions ni of each subproblem (4).

When considering the already published methods without
partial overlapping [3-8], P = { }pij is a permutation matrix

[11] with:

n m= , , pij
i

n

=
� =

1
1 and pij

j

n
=

=
� 1

1
 (13)

i.e., P is not more than an ordering of the unknowns.

EXAMPLE 1: decompose the following linear system to be
solved using block-Jacobi’s method in a distributed system
with two identical processors (P1 and P2)

2 12

0 08 0 1

12 3

1 2

1 2 3

2 3

1

2

3

y y

y y y

y y

b

b

b

+
+ +

+

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

. . (14)

Solution:

F y() . .=
+ −

+ + −
+ −

�

�

�
�
�

�

�

�
�
�

2 12

0 08 0 1

12 3

1 2 1

1 2 3 2

2 3 3

y y b

y y y b

y y b

 (15)

If the decomposition method proposes:

P =
�

�

�
�
�

�

�

�
�
�

= =
0 1 0

0 0 1

1 0 0

2 11 2, , and n n (16)

equation (3) may be rewritten as:

ΦΦΦΦ
ΦΦΦΦ
ΦΦΦΦ

()
()

()

. .

x
x

x

x x x b

x x b

x x b

=
�

�
�

�

�
� =

+ + −
+ +
+ +

�

�

�
�
�

�

�

�
�
�

1

2

1 2 3 2

1 2 3

1 3 1

0 1 0 08

12 3

12 2

 (17)

�
Note that the mapping between the variables x and y is

biunique, i.e. x P y y P x= � = − 1 . Thus, by solving (3), we
solve (1).

An interesting problem arises when a simple reordering of
variables does not allow a good partition because some special
variables (known as critical variables) are required in two or
more processors to assure convergence, due to their strong
links to other variables distributed in different processors of the
computing system. To solve this problem, Ikeda & Šiljak [9]
proposed a Partial Overlapping method that replicates critical
variables in two or more processors.

In example 1, the critical variable is y2 because it is strongly

coupled with the variables y1 and y3 . Then, partial

overlapping may be used, replicating the second equation
(critical equation) in both processors. So, P1 can solve
equations 1 and 2, while P2 solves equations 2 and 3. In this
case, m=3, n=4 (n>m), and the suggested decomposition

method would propose:

P =

�

�

�
�
�
�

�

�

�
�
�
�

= =

1 0 0

0 1 0

0 1 0

0 0 1

2 21 2, , and n n (19)

Then, the expanded problem to be solve will be:

ΦΦΦΦ
ΦΦΦΦ
ΦΦΦΦ

()
()

()

. .

. .
x

x

x
=
�

�
�

�

�
� =

+ −
+ + −
+ + −

+ −

�

�

�
�
�
�

�

�

�
�
�
�

1

2

1 2 1

1 2 4 2

1 3 4 2

3 4 3

2 12

0 08 0 1

0 08 0 1

12

x x b

x x x b

x x x b

x x b

 (20)

In this case:

 1, p Nij
i

n

j
=
� = ≥

1
 and pij

j

n
=

=
� 1

1
 (21)

where Nj is the number of replications of variable yj.

Note that again, given P, there is one biunique mapping

between x and y, i.e. x P y y P x= � = + , where

P P P P+ −= ()T T1 is the pseudo-inverse of P [11].

Remark 1: the goal of the proposed partitioning technique,
given a system of equations F y() = 0 , is to find a mapping
P; so that, with x P y= , we obtain a new system of

equationsΦΦΦΦ()x = 0 that can be efficiently solved with p
possibly heterogeneous processors, using decomposition
(4). To do so, our technique calculates the values ni
proportionally to the relative performance w of the p
processors to be used in the resolution process.

3. PARTIAL OVERLAPPING

As mentioned, there are systems of equations that are very hard
to partition in subproblems because of critical equations that
are strongly related to many other equations. For those
problems, it is very difficult to decide which processor should
solve a given critical equation and sometimes, the best solution
may be to solve it in several processors at the same time, as
shown in the following examples.

Let return to example 1 of the section 2, where:

F y() . .=
+ −

+ + −
+ −

�

�

�
�
�

�

�

�
�
�

2 12

0 08 0 1

12 3

1 2 1

1 2 3 2

2 3 3

y y b

y y y b

y y b

 (22)

can be represented by the following graph:

where the nodes represent the unknowns and the links
represent the coupling value between variables (given by the
coefficients of the problem).

The system can be partitioned without Partial Overlapping in
three different ways with n1= 2, n2= 1 [12], that will be called
Decompositions A, B and C respectively.

At the same time, the system can be partitioned using Partial
Overlapping, with

n1= 2, n2= 2 and P =

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0

0 1 0

0 1 0

0 0 1

.

That way, the critical unknown y2 is replicated in both
processor due to its strong links with y1 and y3. In other words,
processor P1 will solve equations 1 and 2, while processor P2
will solve equations 2 and 3.

In this case, the new system of equation, called expanded
system [7], has an expanded dimension n’=4, and can be
represented by the following graph:

Table 3.1 shows the experimental results obtained when
solving example 1 using two identical processors. As can be
seen, the block-Jacobi iterative algorithm converges only when
Partial Overlapping is implemented.

 Decomposition

 with
Partial Overlapping

without
Partial Overlapping

 A B C

ρ (H) 2.148 1.789 1.039 0.7845

Iterations Do not converge 29
Time ∞

1 s.

As a conclusion of example 1, it can be stated that thanks to the
Partial Overlapping technique, it is possible to solve in parallel
problems that otherwise would not be solvable with parallel
implementations.

EXAMPLE 2: decompose the following linear system to be
solved using block-Jacobi’s method, in a distributed system
with three identical processors (P1, P2 and P3).

y
1
 y

3
 y

2

12

12 0.08

0.1

Figure 3.1: Graph of Example 1.

x
1
 x

3
 x

2

12

12 0.08

0.1

Figure 3.2: Graph for the expanded system of example 1.

x
4

0.08

0.1

y
2
 y

3
 y

1

Table 3.1: Experimental results solving Example 1.

F y() =

+ + + −
+ + + −
+ + + −

+ + + −

�

�

�
�
�
�

�

�

�
�
�
�

10 2 2 10

10 10

2 10 10

5 5 5 100

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1 2 3 4 4

y y y y b

y y y y b

y y y y b

y y y y b

 (23)

Using the decomposition method without Partial Overlapping,
several decompositions can be found, as an example:

 n1= 2, n2= 1, n3= 1 with a permutation matrix:

P =

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

.

So, the new system will be:

ΦΦΦΦ
ΦΦΦΦ
ΦΦΦΦ
ΦΦΦΦ

()

()

()

()

x

x

x

x

=
�

�

�
�
�

�

�

�
�
�

=

+ + + −
+ + + −
+ + + −
+ + + −

�

�

�
�
�
�

�

�

�
�
�
�

1

2

3

1 4 2 3 1

1 4 2 3 4

1 4 2 3 2

1 4 2 3 3

10 10 2 2

5 100 5 5

10 10

2 10 10

x x x x b

x x x x b

x x x x b

x x x x b

 (24)

The resulting spectral radius of the comparison matrix is
ρρρρ() .H = <0 4505 1; thus, the sufficient convergence

condition given by Theorem 1, is satisfied.

As another partitioning alternative, the method proposed in
next section suggests a decomposition with Partial
Overlapping, with the replication of the fourth equation
(critical equation) in the three processors. In this case, there
exists three versions of the same variable y4 (x2, x4 and x6);
therefore, the total number of variables increases in the
expanded system (from n=4 to n’= 6), but the presence of the
critical equation 4 justifies the use of partial overlapping, as
shown below for the case with:

n1= 2, n2= 2, n3= 2 and P =

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

0 0 1 0

0 0 0 1

;

Thus, the expanded system will be:

ΦΦΦΦ
ΦΦΦΦ
ΦΦΦΦ
ΦΦΦΦ

()

()

()

()

x

x

x

x

=
�

�

�
�
�

�

�

�
�
�

=

+ + + −
+ + + −
+ + + −
+ + + −
+ + + −

+ + + −

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�

1

2

3

1 2 3 5 1

1 2 3 5 4

1 3 4 5 2

1 3 4 5 4

1 3 5 6 3

1 3 5 6 4

10 10 2 2

5 100 5 5

10 10

5 5 100 5

2 10 10

5 5 5 100

x x x x b

x x x x b

x x x x b

x x x x b

x x x x b

x x x x b

�
�
�
�

 (25)

The spectral radius of the comparison matrix, for this system, is
ρρρρ(') .H = <0 2105 1 , which indicates that the sufficient

convergence condition of Theorem 1 is satisfied.

By comparison of the spectral radius, the following relation can
be written:

ρρρρ ρρρρ(') . () .H H= < = <0 2105 0 4505 1

threfore, it may be expected that the iterative algorithm (with
Partial Overlapping) will converge faster.

In fact, when both iterative algorithms were implemented, we
measured the experimental results shown in table 3.2, where it
can be seen that the implementation with Partial Overlapping
converges in fewer iterations and faster, despite its greater
dimension. Note that, if the spectral radius is used as a Figure
of Merit to select the best decomposition, according [7-8]
recommendation, the decomposition with Partial Overlapping
is correctly selected as the better one.

 Decomposition

 with Partial
Overlapping

without Partial
Overlapping

Spectral radius 0.4505 0.2105

Iterations 14 9
Time 0.435 s 0.3976 s

4. DECOMPOSITION METHOD

This section presents the proposed decomposition method,
based on previous works of the authors [7-8], with the
significant improvement of semi-automatic partitioning with
Partial Overlapping.

Given a system of m equations with m unknown to be solved in
a distributed system with p processors, the proposed method
uses a matrix M, of dimension m x m, whose elements mij (i ≠ j)
represents the degree of dependency (link value) between the
variables yj and yj respectively.

The variables yi and yj are not adjacent if mij = mji =0;
otherwise, yi and yj are adjacent. In case they are adjacent, they
are called weakly coupled if mij and mji are small, and strongly
coupled if mij and/or mji are large (with respect to other values
of mkl).

The main idea behind the method is to partition de main
problem in subproblems that agglomerate together unknowns
that are strongly coupled, while letting weakly coupled
variables to be calculated in different processors. The size of
each subproblem should be (as much as possible) in direct
relation with the Relative Performance of the processor of the
heterogeneous distributed computing system where it is to be
solved.

Basically, the method can be understood as the formation of p

Table 3.2: Results of solving the Example 2.

Algorithm 4.1: Variable Classification.

Algorithm 4.2: Seeds Selection. sub-systems, beginning with p initial variables, called seeds.
The decomposition of the system is accomplished by assigning
variables to the different partitions (or seeds), trying always to
maintain the number of assigned variables proportional to the

relative performance w ∈ℜp of the processors. As a result of
the decomposition process, the method gives the permutation
matrix P and the subproblem dimensions ni (see Remark 1).

The method consists of four phases represented in figure 4.1.

PHASE 1: Variable Classification (Algorithm 4.1).
a ranking table is built based on a predefined weight
proportional to the level of coupling among variables. The
weight may be defined in several ways [6-8]. For the
experimental results of next section, the following weights
(called Pesoi), were used:

�
≠=

=
m

ijj

z
iji

ijmPeso
,

')(
1

, with:

},{' Sup jiijij mmm = ; and 0≥= Dmz ijij /'
,

where D is the mean of all values of mij ≠ 0.

Input : matrix M

FROM i = 1 TO m /* for each of the m variables. */
 Calculate the weight Pesoi ;
 Include Pesoi in the ordered ranking of variables;

Calculate the weight average Pm;
Calculate the weight standard deviation De;

Output : Weights Pesoi of the m variables ordered in a
ranking, Pm (weight average) and De (weight standard
deviation).

PHASE 2: Seed Selection (Algorithm 4.2).
Each of the p processors selects one variable as its own seed.
Normally, a seed is a variable with a high weight that is not too
close to other seeds, behaving as an agglomeration center of
unknowns. The user has the choice of forcing one or more
variables to be used as seeds. In general, several sets of
different seeds may be obtained at the end of this phase.

Input : matrix M , weights Pesoi , number of processors p, and
predefined parameters (vlim, ngrup, nvec).
vlim is the minimum weight required to consider a variable as
a candidate to be a seed;
ngrup is the number of variables to be grouped around each
seed candidate to check if it is a center of agglomerated
unknowns; and
nvec is a parameter used to avoid two strongly coupled
variables being seed at the same time.

Initialize set K as empty;

/* K, set of possible seed candidates */
FOR each variable yi
 IF (Pesoi ≥ vlim) THEN
 Include variable yi in set K ;

FOR each variable yi in K
 Initialize the set Ii as empty;

/* I, set of variables grouped around each seed candidate */
 Include variable yi in Ii ;
 Initialize the set CIAi as empty;

/* CIA, set of adjacent variables of set Ii */
 Include in CIAi the adjacent variables of variable yi ;
 FROM 1 TO ngrup

/* ngrup variables are grouped around each candidate /
Include variable with highest weight of CIAi into Ii ;
Eliminate this variable from CIAi;
Include in CIAi new adjacent variables of moved variable;

FOR each set Ii
Calculate the weighted sum of all the variables in Ii ;

Initialize the set S;
/* S, set of chosen seeds to begin a partition */

Select in K variable yk with the largest sum of weights in Ik ;
Include yk in S as first seed ;
Eliminate yk from K ;
WHILE (number of seeds < p)

Select in K variable ys with the largest sum of weights in Is;
IF (ys is not between the nvec first variables from set I of
previous selected seeds) THEN
Select ys as seed ;
Include ys in S;
Eliminate ys from K;

ELSE
Eliminate ys from K ;

Output : For each set of parameters, there will be one set S of
p seeds

Phase 3: Partitioning Process (Algorithm 4.3).
The decomposition of the system is accomplished by assigning
variables to different partitions (or seeds) according to the
relative performance wi of each processor i. In this way, the
load balance is maintained between desired levels. Good
convergence properties are obtained when variables are
assigned to partitions to which they have their strongest link. In
case a variable is strongly coupled to several partitions, the

Figure 4.1: Phases of the proposed decomposition method.

Phase 1:
Variable

Classification.

Phase 2:
Seed

Selection.

Phase 3:
Partitioning

Process.

Phase 4:
Partitioning
Evaluation.

Algorithm 4.3: Partitioning Process.

Algorithm 4.4: Partitioning Evaluation.

need of Partial Overlapping is analyzed and eventually
recommended by the method. The user has the choice of
selecting a partition with or without partial overlapping for
“critical variables” Eventually, the user may choose both
partitions; therefore, several partitions may be obtained.

Input: set of seeds S = {s1,...,sp}, matrix M , weights Pesoi
and α , where α is the minimal difference between two links
to consider them as not equally strong.

Calculate LimOver;

Initialize the vectors C ∈N p and Q ∈N p ;
/* C and Q are vectors used to control load balancing */

/* ci is the size of sub-problem i and qi = ci/wi */
FOR each seed si ∈S

/* J, set of variables assigned to a given subproblem */
Initialize set Ji as empty;
Include in Ji the seed si ;
Initialize set CIAi as empty;

/* CIA, set of adjacent variables to set Ii */
Include in CIAi the adjacent variables to the seed si ;

Update the vectors C and Q ;
WHILE there exist variables no grouped
FOR all the sets Ji that need to annex variables
Select heaviest variable in CIA as candidate to be include;
Control if there exist coincidences of candidates;
IF there exist coincidences of candidates �yk THEN

Sort the link values between variables of J and �yk ;
IF (there is no overlapping option OR the difference
between the greatest link value and the following one is
not greater than α) THEN
Include the candidate variable �yk in the corresponding
Ji with the mayor coupling;

ELSE there exists a coincidence
/* overlapping may be useful */

IF weight of variable �yk ≥ LimOver THEN
/* make overlapping */

Form the set Coincidence Co with all the variables
most strongly coupled to �yk ;

Include �yk in all the coincident subsets J;
ELSE
Include �yk in the first J that fights for �yk ;

ELSE
Include �yk in the first J ;

Eliminate �yk from all the CIAs in J ;
Include in the corresponding CIAs the adjacent variables to
the recently included variable;
Actualize C and Q;

ni = ci;
/* ni is the dimension of subproblem assigned to processor i*/

Output : partition in p subproblems (equivalent to matrix P)
and dimensions ni of each subsystem.

Phase 4: Partitioning Evaluation (Algorithm 4.3).
All the decompositions generated by the proposed method and
other decompositions eventually recommended by the user,
should be compared to chose the more promising one. For that
task, several criterions may be used, but we found [7-8] that the
best one is to compare the spectral radius of the comparison
matrix [2]. That way, the different decompositions are ranked
and the user can choose the best one(s).

Input : all the partitions generated by algorithm 4.3 or any
other partition introduced by the user.

FOR each partition
Calculate ρ()H ;
Include the value of ρ()H in a ranking;

Select as best partition the one with smaller ρ()H ;
Write explicitly permutation matrix P of the selected partition;

Output : ranking of partitions, with explicit values of P and ni
for the recommended decomposition.

5. EXPERIMENTAL RESULTS

The advantages of solving large systems using heterogeneous
distributed computing system are well established in the
literature [1-3]. Experimental results using different
partitioning methods (without overlapping), have already been
presented [6-8]. Therefore, this section presents experimental
results with partial overlapping using a distributed computing
environment with three personal computers (p = 3) with similar
performance (w = [1,1,1]T). Let consider the linear system of
13 equations and 13 unknowns A x = b, with:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

10300000000003

310000500000003

00100000010003

000103005000300

00031030000300

050003100000300

00000010300030

000500031000030

00100000100031

000000000100555

000333000101012

000000333101101

333000001102210

.

.

.

.

A

By using de decomposition method of section 4 with M = A,
two different partitions are chosen [12]:

♦ one without overlapping, with n1 = 4, n2 = 5 and n3 = 4;

♦ and another with partial overlapping that replicates x4 in the
three processors, and dimensions n1 = n2 = n3 = 5.

Experimental results, solving the above system with block-
Jacobi’s method, are presented in Table 5.1. There, it can be
seen that the proposed decomposition method finds a partition
with overlapping that solves the problem in fewer iterations,
and consequently, in less time than the one without
overlapping. Note that the decomposition method presented in
section 4 would choose in Phase 4 the partition with
overlapping as the recommended one, because it has a smaller
ρ(H).

Similar results are reported in [12] where there is an example
in which no partition without overlapping solves a 13 X 13
linear system of equations, while the decomposition method of
section 4 finds a partition with overlapping that can be solved
in parallel without difficulties.

 Decomposition

 without Overlapping with Overlapping
 Dimension m = 13 n = 15
 ρ(H) 0.8172 0.3780
 Iterations 18 9
 Time 0.6179 s 0.3676 s

Table 5.1 Experimental results solving the 13 X 13 system.

Another (sparse) linear system of 100 equations with 100
unknowns is presented in [12] and solved with the same
computing resources, with the results presented in Table 5.2.
Again, the proposed decomposition method is able to find a
partition with partial overlapping that can be solved in fewer
iterations than the one without partial overlapping. Once more,
the solution with partial overlapping is faster.

 Decomposition

 without Overlapping with Overlapping
 Dimension m = 100 n = 102
 Iterations 21 12
 Time 0.78939 s 0.45108 s

Table 5.2 Experimental results solving a 100 X 100 system.

In short, the systems of equations presented above are useful to
probe that partial overlapping may be used not only with small
problems, as the one presented in section 3, but with larger
ones. Moreover, the examples are interesting to show that the
decomposition method presented in section 4 is able to
recommend good partitions using partial overlapping.
However, if partial overlapping is that useful,

why most professionals do not use it?.

To have a better insight of the way the decomposition method
works and to try to find an answer of the above question, a
number of randomly generated linear systems of equations of
dimension 100, with different percentage C of zeros (C= 0%,
30%, 50%, 70%, and 90%, to experiment with sparse

matrices), were solved with different number of processors (p =
2, 3, 4, 5, ...). Each 100X100 randomly generated problem was
partitioned using the decomposition method of section 4, for
different values of the parameters α and LimOver used by the
method of section 4.

After studying 100 randomly generated problems for each set
of parameters [C, p, α, LimOver], we got to the results and
recommendations that follows.

♦ The number of overlapped unknowns increases with

LimOver, as expected. It was found experimentally that a
good a-priori choice may be:

LimOver = Pm + 2 De;
that way, only highly coupled variables can be overlapped.

♦ The parameter α, used to decide if two links are equally
strong, is not very important for the decomposition method.
In fact, if it is reasonable in a wide range (1% to 10% of the
mij values), the same decomposition is recommended by
the method. As expected, the number of recommended
overlapping may increase slightly with α.

♦ The percentage C of zeros does not change significantly the

possibility of using partial overlapping. However, it was
noted that the number of overlapped variables
recommended by the decomposition method may decrease
for extreme values of C (too large or too small).

♦ In general, there is a very small number of problems for

which partial overlapping is recommended. According to
our experiments, no more than 3% of the problems can
benefit from using partial overlapping. This result seems
the main reason why people do not bother to use partial
overlapping, unless it is too obvious to use a decomposition
technique.

♦ It was noted that the number of overlapped variables

increases with the number of processors; therefore, partial
overlapping may become more important when we try to
solve very large problems with a large number of
processors.

In conclusion, partial overlapping has been rarely used in
practical problems because it is very difficult to find a-priori
good partitions with partial overlapping and an exhausted
method to find a good partition is out of possibilities becuase
the space of possible partitions is combinatorial. To make it
worth for practical applications, only a very small percentage
of problems can benefit from the partial overlapping technique
when solved in parallel. In consequence, the partial
overlapping technique was not thoroughly studied even though
it is known for more than a decade [9]. This situation may now
change with the proposed decomposition technique that
automatically recognizes situations for which the use of partial
overlapping technique may be very useful and recommends
good partitions that can benefit from this technique.

6. CONCLUSIONS

In view of the advent of parallel and distributed computer
systems, as the existing networks, several decomposition
methods have been published with the idea of solving a large
problem using the existing computing resources. However,
most of the published techniques do not have the ability of
controlling the size of each subproblem in such a way that load
balancing between heterogeneous processors can be
accomplished.

To overcome this problem, the authors proposed an heuristic
technique, consisting of 4 sequential phases, that has the ability
of decomposing a problem in a given number of subproblems,
with a load balance proportional to the relative performance of
the processors to be used in the resolution. In each phase of the
proposed method, an expert user can interact with the method
by suggesting different parameters, the interest in considering
partial overlapping, or even partitions that may look good a-
priri . Phase 4 of the method makes a ranking of the better
partitions, based on a parameters that can assure convergence
of an iterative implementation, even in an asynchronous
environment.

A very unique feature of the proposed method is its ability to
recommend partial overlapping in situations where it may be
very useful. In fact, in section 3 it was presented examples
where a problem can be better solved in parallel, when partial
overlapping technique is used. Other examples with larger
systems of equations (13X13 and 100X100) where presented in
section 5, showing that partial overlapping may be vary useful
when we have the ability of finding when and how to used it.

To understand why most professionals do not use partial
overlapping, a number of randomly generated systems of
equations were studied, concluding that only in a small amount
of problems (less than 3%) can benefit from this technique.
Therefore, it was not worth finding good partitions with partial
overlapping, specially because there was no published method
to do it automatically.

This problem may be now overcame with the presented method
that is able to recommend good partitions with partial
overlapping, that may have the additional benefit of using
Asynchronous Team Algorithms [2] to solve each version of a
critical variable with a different algorithm.

As a consequence, the interest in partial overlapping may
increase and more professionals may benefit from this
technique when solving large problems using heterogeneous
distributed computing facilities, as the existing computer
networks which increase their aggregate CPU power with an
impressive speed.

7. REFERENCES

[1] Hiu Ch. and Chanson S., “Allocating Task Interaction

Graphs to Processors in Heterogeneous Networks”.
IEEE Transactions on Parallel & Distributed Systems.
Vol. 8, No. 9 , pp. 908-925, Sep. 1997.

[2] Barán B., Kaszkurewicz E. and Bhaya A., “Parallel

Asynchronous Team Algorithms: Convergence and
Performance Analysis”. IEEE Transactions on Parallel
& Distributed Systems. Vol. 7, No. 7 , pp. 677-688, Jul.
1996.

[3] Vale M.H., “Descomposição de Redes Eléctricas para

Procesamiento Paralelo.” Doctoral Dissertation
COPPE/UFRJ. Rio de Janeiro, Brazil, 1995.

[4] Carré B.A., “Solution of Load-Flow by Partitioning

Systems into Trees”, IEEE Transactions on Power
Apparatus and Systems, vol. PAS-88, pp. 1931-1938,
Nov. 1968.

[5] Sezer M. and Šiljak D.D., “Nested epsilon

decomposition of complex systems”. IFAC 9th World
Congress, Budapest, Hungary. Jul. 1984.

[6] Vale M.H., Falcão D.M. and Kaszkurewicz E.,

“Electrical Power Network Decomposition for Parallel
Computations”. IEEE International Symposium on
Circuits and Systems, (ISCAS 92). San Diego,
California, 1992.

[7] Barán B., Benítez D. and Ramos R., “Partición de

Sistemas de Ecuaciones para su Resolución
Distribuida”, XXII Latino-American Conference - CLEI
96, Bogota - Colombia. Jun. 1996.

[8] Barán B., Benítez D. and Ramos R., “Partición de

Sistemas Eléctricos en Subsistemas Menores para su
Resolución Distribuida”, VII Encuentro Regional
Latinoamericano de la CIGRÉ - VII ERLAC, Puerto
Yguazú – Argentina, May 1997.

[9] Ikeda M. and Šiljak D.D., “Overlapping

decomposition, expansions and contractions of
dynamic systems”. Large Scale System 1, North-
Holland Publishing Co., pp.29-38, 1980.

[10] Bertsekas D.P. y Tsitsiklis J.N., Parallel and

Distributed Computation. Numerical Methods,
Editorial Prentice-Hall, 1989.

[11] Strang G., Linear Algebra and its Applications, Second

Edition, Academic Press Inc. Florida, pp. 77-80.

[12] Benítez D. and Barán B. “Descomposición Solapada de

Sistemas de Ecuaciones para su Resolución en
Sistemas Distribuidos,” Technical Report RT-001/98.
Asuncion, Paraguay, 1998.

