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Abstract.

This paper presents a new approach to treat Reactive Power Compensation in Power Systems using a
Multi-objective Optimization Evolutionary Algorithm. A variant of the Strength Pareto Evolutionary
Algorithm is proposed to independently optimize several parameters instead of traditional constrained Single-
objective approach where an objective function is a linear combination of several factors, such as, investment
and transmission losses, with several constrains that limit other parameters as reliability and voltage profile.

At the same time, computational results are presented showing that a good amount of practical solutions
are found with the proposed method instead of a set of compensation schemes elaborated by a team of
specialized engineers specialists using nowadays methods. Comparison results using appropriate test suit
metrics emphasize outstanding advantages of the proposed computational approach, such as: ease of
calculation, better defined Pareto Front and a larger number of Pareto solutions.

1. Introduction.

Reactive Power Compensation (RPC) in power systems is a very important issue in the expansion planning
and operation of power systems because it leads to increased transmission capability, reduced losses and
improved power factor using shunt capacitors that have been very commonly installed in transmission and
distribution networks. By applying capacitors adjacent to loads, several advantages are obtained some of them
are [1, 2]:

• improved power factor,
• reduced transmission losses,
• increased transmission capability,
• improved voltage control,
• improved power quality.

Achievement of these items depends mainly on an adequate allocation of shunt capacitor banks. Thus, this
problem can be stated as the determination of the locations and the capacities of new sources of reactive
power, searching simultaneously to accomplish the following goals:

• a good bus tension profile: the quality of service is directly related to the difference between the
effective and the nominal bus voltage,

• minimization of transmission losses: active power transmission losses can be directly translated into
monetary losses since they are the main component in the difference between the generated power and
the consumed power,

• minimization of the amount of reactive compensation installed: although shunt capacitor compensation
generally provides the most economical reactive power source for voltage control, heavy use of these
devices could lead to the reduction of stability margins and poor voltage regulation [2].
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RPC is commonly addressed as a constrained Single-objective Optimization Problem (SOP) [3-7]. In this
context, the objective function is a linear combination of several factors, such as: investment and transmission
losses, subject to operational constrains such as reliability and voltage profile [2]. Traditional Multi-objective
Optimization Algorithm usually provide a unique optimal solution. On the contrary, Multi-objective
Optimization Evolutionary Algorithms (MOEA) independently and simultaneously optimize several
parameters turning most traditional constraints into new objective functions. This seems more natural for real
world problems where choosing a threshold may seem arbitrary [8]. As a result, a wide set of optimal
solutions (Pareto set) may be found. Therefore, an engineer may have a whole set of optimal alternatives
before deciding which solution is the best compromise of different (and sometimes contradictory) features.
This approach has already been treated as a Multi-objective Optimization Problem (MOP) with two
conflicting objective functions [7].

To solve the RPC, this paper presents a new approach based on the Strength Pareto Evolutionary
Algorithm (SPEA) [9]. SPEA shares the following characteristics with other MOEAs:

• stores the nondominated solutions found so far externally,
• uses the concept of Pareto dominance in order to assign scalar fitness value to the individuals,
• performs clustering to reduce the number of nondominated solutions stored without destroying the

characteristics of the tradeoff front.

We have chosen SPEA because it has the following unique characteristics:

• it combines the techniques above exposed in a single algorithm,
• the fitness of an individual is determined only from the solutions stored in the external nondominated

set, whether members of the population dominate each other is irrelevant,
• all the solutions that are included in the external nondominated population participate in the selection;
• it introduces clustering,  a new method in order to induce niching [10,11],
• its convergence property, assured by Theorem 4 proved in [8],
• solutions  present, with respect to other MOEAs, a smaller distance to the Pareto-optimal front [12,13].

This main objective of this works is show the convenience of the SPEA algorithm in the search of good
practical solutions, with compensation schemes that lead to interesting savings in infrastructure investment
and operative performance of the power system.

2. Multi-objective Optimization Problems.

A general MOP[8] includes a set of n decision variables, a set of k objective functions, and a set of m
restrictions. Objective functions and restrictions are functions of decision variables. This can be expressed
mathematically as:
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x is known as decision vector and y as objective vector. X denotes the decision space and the objective
space is denoted by Y. Depending on the problem at hand “optimize” could mean minimize or maximize.

The set of restrictions e(x) ≥ 0 determines the set of feasible solutions Xf and its corresponding set of
feasible objective vectors Yf.

From this definition, it follows that every solution consists of a n-tuple x, that yields an objective vector y,
where every x must satisfy the set of restrictions e(x) ≥ 0. The optimization problem consists in finding the x
that has the “best” F(x). In general, there is not one “best” solution, but a set of solutions, none of which can
be considered better than the others if all objectives are considered at the same time. This derives from the
fact that there could be (and mostly there are) conflicts between the different objectives that compose a
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problem. Thus, a new concept of optimality should be established for MOPs.

In common SOPs the set of feasible decision variables is completely ordered by the objective function F.
The goal is simply to find the value (or set of values) that lead to the optimal values of F. In contrast, in multi-
objective optimization the feasible decision vector set is only partially ordered; i.e., there exist a decision
vector x1 and a decision vector x2 and F(x1) cannot be considered better than F(x2), neither F(x2) is better than
F(x1). Then, mathematically the relations =, ≤ and ≥ should be extended. This could be done using the
concept of dominance as explained below. In fact, given two decision vectors u, v ∈X in a context of
minimization, we can state:

F(u) = F(v) iff    Fi(u) = Fi(v)   ∈∀i {1, 2, ... , k}
F(u) ��F(v)    iff    Fi(u) ��Fi(v)   ∈∀i {1, 2, ... , k}
F(u) < F(v)  iff F(u) ��F(v) ∧ F(u) ≠ F(v);

(2)

where ∧ denotes an and operation.

The relations � and > could be defined in similar ways. Then, given two decision vectors of a MOP, x1 and
x2 they comply to one of three possible conditions:

• either F(x1) < F(x2),
• or F(x2) < F(x1),

• or F(x1) % F(x2) ∧ F(x2) % F(x1).

The above relations may be expressed with the following symbols:

Pareto Dominance. Given two objective vectors a, b∈X

a 0 b (a dominates b) iff a < b

b 0 a (b dominates a) iff b < a

a ó b (a and b are not comparable)  iff a % b ∧ b % a

(3)

Definitions for the maximization and maximization/minimization problems could be formulated in a
similar way.

At this point the concept of Pareto optimality can be introduced. A solution is said to be Pareto-optimal or
“non inferior” if any objective can not be improved without degrading others.

Pareto Optimality. A decision vector x ∈ Xf and its corresponding objective vector y = F(x) ∈ Yf is non-
dominated with respect to a set A ⊆ Xf if and only if

∀ a ∈ A : (F(x) 0 F(a) ∨ F(x)  ó F(a)) (4)

where ∨ denotes an or operation.

When x is non-dominated with respect to the whole set Xf (and only in this case) x is a Pareto-optimal
solution. The whole set of Pareto-optimal solutions is known as Pareto-optimal set P; i.e.

P = { x ∈ Xf |  F(x)0 F(v) ∨ F(x )ó F(v) ∀ v ∈ Xf } (5)

The corresponding set of objective vectors y is known as Pareto-optimal front FP; i.e.,

FP = { y ∈ Yf | y = F(x) ∀ x ∈ P } (6)

Dealing with Pareto-optimal solutions, it is clear that they are non-comparable. This points to the fact that a
MOP does not always have a single solution, but a set of compromise solutions. None of these solutions can
be defined as “the best”, unless other information is added (as a weight for every objective).



4

3. Mathematical formulation.

For the purposes of this paper, the following assumptions are considered in the formulation of the problem:

• shunt-capacitor bank cost per MVAr is the same for all busbars of the power system,
• power system is considered only at peak load.

Based on these considerations [2, 14], four objective functions Fi (to be minimized) have been identified
for the present work: F1 and F2 are related to investment and transmission losses, while F3 and F4 are related
to quality of service. The objective functions to be considered are:

3.1. F1: Investment in reactive compensation devices.

(7)
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where: F1 is the total required investment; F1m is the maximum amount available for investment; Bi is the
compensation at busbar i measured in MVAr; Bm is the absolute value of the maximum amount of
compensation in MVAr allowed at a single busbar of the system; α is the cost per MVAr of a capacitor bank
and n is the number of busbars in the electric power system.

3.2. F2: Active power losses.

02 ≥−= lg PPF , (8)

where: F2 is the total transmission active losses of the power system in MW; Pg is the total active power
generated in MW and Pl is the total load of the system in MW.

3.3. F3: Average voltage deviation.

(9)
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where: F3 is the per unit (pu) average voltage difference; Vi is the actual voltage at busbar i (pu) and Vi* is the
desired voltage at busbar i (pu).

3.4. F4: Maximum voltage deviation.
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where F4 is the maximum voltage deviation from the desired value (pu); nℜ∈V is the voltage vector

(unknown) and nℜ∈∗V is the desired voltage vector.

In summary, the optimization problem to be solved is the following:

[ ]4321 FFFFminimize =F , (11)
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subject to mF11F0 ≤≤ ,  mi BB ≤≤0 and the load flow equations [15]:
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where: Vk is the voltage magnitude at node k; Yki is the admitance matrix entry corresponding to nodes k and i;
δk is the voltage phase angle at node k; θki is the phase admitance matrix entry corresponding to nodes k and i;
Pk is the active power injected at node k; Qk is the reactive power injected at node k.

To represent the amount of reactive compensation to be allocated at each busbar i, a decision vector B [9],
is used to indicate the size of each reactive bank in the power system, i.e.:

[ ] miin BBBBBB ≤ℜ∈= ,,21 �B , (13)

Note that the true Pareto-optimal set (termed Ptrue), with its corresponding PFtrue, are not completely known
in practice without extensive calculation (computationally not feasible in most situations). Therefore, it would
be normally enough for practical purposes to find a known Pareto-optimal set, termed Pknown, with its
corresponding Pareto Front PFknown, close enough to the true optimal solution [8].

4. Proposed approach.

A new approach based on the Strength Pareto Evolutionary Algorithm was developed for this work, but
differs from [9] and [16] in the following aspects:

• Encoding. The location and size of shunt capacitors are encoded by a vector of integer numbers where
each component corresponds to a busbar of the electric power system and the value of each component
represents the quantity of 1 MVAr capacitors in the bank of shunt capacitors, given that the size of
these devices is in fact quantisized in commercial applications. A non binary alphabet allows to
consider different sizes of shunt capacitors easily [17]. An individual is thus represented by:

[ ] { }min Bxxxx ,,2,1,0,21 �� ∈=x , (14)

where x is an individual; xi is the size of the shunt capacitor bank allocated at busbar i; and n is the
number of busbars in the electric power system. As an example, figure 1 presents an electrical power
system with three busbars (n=3) with a compensation vector  x = [12   4   7].

Figure 1. Example of a power system.

• Heuristic Initialization. A special heuristic method is used to generate the initial population in order to
obtain individuals electrically well compensated. The proposed heuristic is based on encouraging
compensation at busbars with large number of branches and voltage profile far from the desired value.
This is done by using a method summarized as follows:
1. Choose a total amount of compensation Btot.
2. For each busbar i of the system, calculate a factor Hi using the following expression:
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where li is the number of branches connected to node i. Hi = 0 indicates that no reactive
compensation is heuristically assigned to busbar i.

3. Normalize Hi using:
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4. Compensate each busbar i with Bi calculated as follows:

totii BHB '= ,

• Scaling. A special heuristic method is used to improve the fitness calculation in order to discourage
individuals electrically not well compensated in strategic busbars. The proposed heuristic privileges
busbars with large number of branches and good voltage profile. This is accomplish with the following
scaling method:
1. For each busbar i of a scheme (individual of a population), calculate a (penalization) factor Ki

using the following expression:
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where li is the number of branches connected to node i. Ki = 0 indicates that no reactive
compensation is heuristically recommended for busbar i.

2. Evaluate a penalization scaling constant K for each scheme using:
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3. Scale fitness according to:
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• Stop criterion. Computation is halted after a maximum number of generations or when no new
nondominated solution is found to dominate an individual of the external population for a given
number Nstop of successive generations.

• Two External Populations. If only one external population is used, it is possible:
1. to save all found Pareto solutions, but this population may become too large and the evolutionary

population looses genetic importance in the search process, or
2. to loose found solutions using clustering to maintain a given number g of external solutions

(original SPEA approach).
In this new proposal, two external populations are stored, one with all found nondominated solutions
and another with a maximum number g of nondominated individuals, fixed by clustering, that
participates in the ordinary evolutionary process. That way, the external population used in the
evolutionary process does not diminish the influence of the evolutionary population and no optimal
solution is lost. Note that this second external population does not participate in the evolutionary
process.

The proposed approach may be summarized as follows:
1. Generate an initial population Pop with heuristic initialization procedure and create an empty external

nondominated set Pknown.
2. Copy nondominated members of Pop to Pknown..Remove individuals within Pknown which are covered

(dominated) by any member of Pknown.
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3. If the number of externally nondominated solutions in Pknown exceeds a given maximum g, clustering is
applied in order to reduce the external population to a size g.

4. Calculate the fitness of each individual in Pop as well as in Pknown using scaled SPEA fitness
assignment procedure.

5. Select individual from Pop + Pknown (multiset union) until the mating pool is filled. For this study,
roulette wheel selection was used.

6. Apply crossover and mutation standard genetic operators.
7. Go to step 2 if stop criterion is not verified.

5. Experimental environment.

As a study case, the IEEE 118 Bus Power Flow Test Case has been selected [18]. In order to stress the
original system, its active and reactive loads were incremented by 40%, turning the power network in an
adequate candidate for RPC. This IEEE 118 Bus Test Case represents a portion of the American Electric
Power Systems (in the Midwestern US) as of December, 1962. A schematich representation of this system is
shown in figure 2.

Figure 2. IEEE 118 Bus Power Flow Test Case.

The computational platform used was a PC with a 350 MHz processor, and 128 MB RAM. The
codification has been implemented in MATLAB 5.31, using MATFLOW

2 routine to solve each load flow for
fitness calculation.

For comparison purposes, the Pareto set generated by the proposed approach has been compared to a Pareto
set obtained by a team of specialized engineers using standard computational programs that will be called
heuristic method for this work.

For the experimental results presented in the following section, it has been assumed for simplicity that
1=α , i.e., capacitor banks have unitary cost per MVAr. At the same time, Nstop = 100 was experimentally

chosen.

To be able to compare two different sets of solutions, an appropriate test suite metrics is used [8], because
no single metric can entirely capture total MOEA performance, effectiveness and efficiency. The test suit
comprises the following metrics:

1 Copyright 1984-1999 by The Math Works, Inc.
2 F. CARDOZO AND U. FERNÁNDEZ {fcardozo, ufernandez}@ieee.org



8

5.1. Overall Nondominated Vector Generation (N).

cknownPFN
∆

= ,

where 
c

⋅ denotes cardinality.

This metric indicates the number of solutions in PFknown. A good PFknown set is expected to have a large
number of individuals, in order to offer a wide variety of options to designers.

5.2. Overall Nondominated Vector Generation Ratio (ONVGR).
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It denotes the ratio between the number of solutions in PFknown to the number of solutions in PFtrue. Since
the objective is to obtain a PFknown set as similar as possible to PFtrue, a value near to 1 is desired.

5.3. Error Ratio (E).
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This ratio reports the proportion of objective vectors in PFknown that are not members of PFtrue. Therefore,
an Error Ratio E close to 1 indicates a poor correspondence between PFknown and PFtrue, i.e., E = 0 is desired.

5.4. Maximum Pareto Front Error (ME).
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It indicates the maximum error band that, when considered with respect to PFknown, encompasses every
vector in PFtrue. Ideally, ME = 0 is desired.

5.5. Generational Distance (G).
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where id is the Euclidean distance (in objective space) between each objective vector F in PFknown and its

nearest member in PFtrue. A large value of G indicates PFknown is far from PFtrue, being G = 0 the ideal
situation.

Since most of these metrics reflect the likeness between the true Pareto Front Optimal set PFtrue and a
computed Pareto Front set PFknown, a good approximation of PFtrue is built from a complete set of solutions
extensively calculated during several months.
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6. Experimental results.

For experimental purposes, a classical implementation of the SPEA MOEA was first tested, but it soon
reached a stagnant population; i.e., no new solutions were obtained with new generations for Nstop = 100
generations, satisfying the stop criterion. On the other hand, the proposed approach stopped using a maximum
number of generation criterion, since it continues generating new solutions, not showing the premature
convergence seen in our SPEA implementation. This is an important advantage of the new approach since it
gives the user a wider variety of alternative solutions; therefore, only the proposed approach will be compared
to the specialists’ results. Consequently, the following tables presents experimental results using the IEEE-
118 study case, comparing the solutions obtained with a typical run of the proposed approach with respect to
the best solutions obtained by a team of highly specialized engineers using traditional computing tools.

Table 1 shows solutions obtained with the proposed approach while table 2 does the same for the solution
set generated by the specialists (heuristic method). Both tables present in the first column an ID for
identification of each individual in the final Pareto set. Columns 2 to 5 contain the objective values obtained
for each individual. The last column tells whether the individual is dominated (or not) by any solution in the
other set.

Table 1. Proposed approach: performance of solutions.
# F1 F2 F3 F4 Dominated by

SP1 133.14 472 0.0492 0.0096
SP2 133.35 454 0.0494 0.0099
SP3 133.52 498 0.0488 0.0101 H1

SP4 132.59 497 0.0485 0.0101
SP5 132.47 486 0.0485 0.0102
SP6 132.55 484 0.0499 0.0105
SP7 132.78 473 0.0465 0.0111
SP8 133.48 360 0.0496 0.0111
SP9 132.78 294 0.0490 0.0116
SP10 134.66 424 0.0493 0.0117 H4

SP11 132.80 424 0.0500 0.0117

� � � � �
SP265 132.82 459 0.0458 0.0117

Table 2. Heuristic method: performance of solutions.
# F1 F2 F3 F4 Dominated by

H1 133.07 497 0.0476 0.0098
H2 133.08 495 0.0503 0.0098
H3 133.14 472 0.0507 0.0101 SP1

H4 134.58 406 0.0486 0.0110
H5 132.72 499 0.0510 0.0115 SP6

H6 132.75 491 0.0513 0.0116 SP4

H7 132.78 487 0.0515 0.0116 SP7

H8 132.79 481 0.0515 0.0116 SP9

H9 132.86 473 0.0517 0.0117 SP11

H10 132.91 466 0.0518 0.0118 SP11

H11 132.93 463 0.0518 0.0119 SP265

� � � � �
H170 135.00 162 0.0522 0.0131

As shown in the last columns of tables 1 and 2, there are more individuals calculated by the proposed
approach that dominate solutions given by the specialists than the other way around. Clearly, the proposed
method overcome the heuristic one in the quality of the solutions. Additionally, the proposed method has the
advantage of presenting a wider variety of options (265 solutions) with fewer highly specialize engineers.
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Table 3 shows the experimental results of a comparison based on the test suite metrics presented in section
5. As previously remarked, the proposed metrics try to measure the similarity between the solutions set and
the True Pareto set in objective space. From the experimental results, it can be confirmed that the proposed
approach offers better solutions than the ones proposed by the experts, as clearly indicated by the first four
metrics, and noting that the relative difference in Generational Distance metric (G) is relatively small (less
than 3.2 %). In fact, the proposed approach presents a larger set of solutions (N = 265 vs. 232) that are mostly
true solutions (ONVGR of 86,6 % vs. 75.8 % for the heuristic method) and with smaller error (E = 0.076 and
ME = 0.048).

Tabla 3. Results using Comparison Metrics.
Metric Proposed approach Heuristic method Relative difference

100*(prop. - heu.)
prop.

Best method

N 265 232 12.453  % Proposed
ONVGR 0.866 0.758 12.471  % Proposed

E 0.076 0.302 -299.603 % Proposed
ME 0.048 0.078 -62.343  % Proposed
G 0.609 0.590 3.118  % Heuristic

7. Concluding remarks.

In this paper, Reactive Compensation Problem is treated as a Multi-objective Optimization Problem with
four conflicting objective functions:

(i) investment in reactive compensation devices,
(ii) active power losses,
(iii) average voltage deviation,
(iv) maximum voltage deviation.

To solve the problem, a new approach based on SPEA is proposed. This new approach introduces new
features such as:

(i) a heuristic initialization,
(ii) a fitness scaling technique,
(iii) a stop criterion, and
(iv) two external populations.

For comparison purposes, the solution set obtained in a single run of the proposed approach is compared to
a set of heuristic schemes elaborated by a team of specialists.

Experimental results using the proposed approach demonstrated several advantages, such as:

(i) a set of solutions closer to the True Pareto Set outperforming the heuristic approach in most of the
studied figures of merits,

(ii) highly reduced need for specialized human resources due to the automatic nature of the method, and
(iii) a wider variety of options.

This last feature is of special importance, since a richer set of alternatives is offered to the network
planners. In order to select sub-sets of solutions which best fit the interests of the user, an adaptive constrain
philosophy is suggested. That way, the network engineer may restrict the constraints to reduce the number of
solutions after having a good idea of the whole Pareto solutions, searching forward only in the redefined
domain. This process may continue iteratively until a good solution with an acceptable compromise among
objective functions is found [13].

As future work parallel asynchronous computation using a network of computers is considered for larger
networks with more objective functions, given the huge need of resources in order to optimize investments
and energy transmission in large real world systems.
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