
Argentine Symposium on Artificial Intell igence

AntNet: Routing Algorithm for Data Networks based
on Mobile Agents

 Benjamín Barán
�

 Rubén Sosa

National Computer Center Science and Technology School
National University of Asuncion Catholic University of Asuncion

bbaran@sce.cnc.una.py rsosa@personal.com.py
 P.O.Box 1439 Tuyutí 1343, Tel. 595-21-390378

 San Lorenzo-Paraguay Asunción-Paraguay

Abstract. AntNet is an innovative algorithm for packet routing in
communication networks, originally proposed by M. Dorigo and G. Di Caro
(1997). In AntNet, a group of mobile agents (or artificial ants) build paths
between pair of nodes; exploring the network concurrently and exchanging
obtained information to update the routing tables. This work analyzes AntNet
and proposes improvements that were implemented, comparing their
performance with respect to the original AntNet and other commercial routing
algorithms like RIP and OSPF. The simulation results indicate a better
throughput (amount of packages successfully routed per unit time) of the
improved proposals. As for packet delay, the improved proposals equally
overcame the original AntNet, although RIP and OSPF were unbeatable in this
measure of performance. Due to the great increase in the number of users in
networks like Internet, the network service administrators will prioriti ze the
throughput (amount of service that could be offered in a given moment), in
order to offer services to the growing number of users. So, AntNet and its
variants are promising alternatives for routing of data in big networks.

Keywords: mobile agents, routing, performance, communication network.

1 Introduction

Routing in a data network is the action of addressing data traffic between pair of
nodes source-destination, being this, fundamental in a communication network
control. In conjunction with a flow control, congestion and admission, routing
determines the total network performance, in terms of quality and amount of offered
services (Dorigo 1998). The routing task is performed by routers, which update their
routing tables by means of an algorithm specially designed for this purpose. The first
routing algorithms addressed data in a network minimizing any costs function, like
physical distance, link delay, etc. However, throughput optimization remained in a

�

 This work was partially supported by a DIPRI Research Grant of the National University of
Asuncion.

Argentine Symposium on Artificial Intell igence

second plane, possibly due to a relatively small amount of users. This is the case of
the RIP algorithm (Routing Information Protocol), based on the distance-vector
method and the OSPF (Open Shortest Path First), algorithm thoroughly used in
Internet, based on the link-state method. Both methods choose the path with
minimum cost (generally the shortest path) between pair of nodes (Dorigo 1997). This
could produce "bottlenecks", because this path could congest, in spite of other paths,
possibly expensive, but less congested (Shankar 1992).

Unfortunately, traditional routing methods, due to the limitations explained above,
don't have enough flexibilit y to satisfy the new routing demands, like new network
services, and mainly the impressive increase in the amount of users, that forces the
network administrators to improve throughput in order to satisfy the immense amount
of users that simultaneously request services. This situation has impelled the study
and development of other routing methods, to satisfy these new demands. Such is the
case, for example, of a routing method known as LBR (Load Balancing Routing)
(Back 1999), based on a load-balancing scheme. This method addresses routing by
equally distributing load over all possible paths. This diminishes the congestion
probabilit y in the minor cost links, improving the network performance.

Actually, other very studied routing alternatives are based on mobile agents
(Dorigo 1997, 1998; Schoonderwoerd 1997). In fact, the present work analyzes an
algorithm based in this method, known as AntNet, which was first proposed by M.
Dorigo and G. Di Caro, of the Free University of Brussels-Belgium (Dorigo 1997,
1998). AntNet was inspired in previous successful works, based on ant colonies
(ACS: Ant Colony Systems) (Dorigo 1996, 1997; Schoonderwoerd 1997; Barán
1999). ACS is an optimization method where a group of artificial ants moves around a
graph, which represents the instances of the problem; so, they move building
solutions and modifying the problem using the obtained information, until they find
good solutions to the problem.

The ACS concept is used in AntNet. Here, each artificial ant builds a path from its
source node until it s destination. While an ant builds a path, it gets quantitative
information about the path cost and qualitative information about the amount of
traff ic in the network. Then, this information will be carried by another ant travelli ng
the same path but in the opposing direction modifying the visited nodes routing
tables. The first simulations with AntNet (Dorigo 1997, 1998) showed a promising
performance, overcoming traditional algorithms like RIP and OSPF, demonstrating
that it is a valid alternative for data routing.

Present work analyzed Dorigo and Di Caro versions of AntNet (Dorigo 1997,
1998). After that, it proposes two improved versions, which were implemented in C
language together with the two original AntNet versions, besides versions of RIP,
OSPF and three versions of LBR, adding a dozen of algorithms to be compared.
Finally, the simulations results demonstrate the improvements in throughput and
packet delay obtained with the modified versions, here proposed.

Argentine Symposium on Artificial Intell igence

2 AntNet Algorithms

The AntNet first version, presented in 1997 (Dorigo 1997), will be denominated
AntNet1.0, and the second version published in 1998 (Dorigo 1998) will be called
AntNet2.0. Following, both versions are briefly discussed.

2.1 Algorithm AntNet1.0

Suppose a data network, with N nodes, where s denotes a generic source node,
when it generates an agent or ant toward a destination d. Two types of ants are
defined:

1. Forward Ant, denoted Fs�d, which will t ravel from the source node s to a
destination d.

2. Backward Ant, denoted Bs�d, that will be generated by a forward ant Fs�d in the
destination d, and it will come back to s following the same path traversed by Fs�d,
with the purpose of using the information already picked up by Fs�d in order to
update routing tables of the visited nodes.

Every ant transports a stack Ss�d(k) of data, where the k index refers to the k-est
visited node, in a journey, where Ss�d(0)= s and Ss�d (m)= d, being m the amount of
jumps performed by Fs�d for arriving to d.

Let k be any network node; its routing table will have N entries, one for each possible
destination.
Let j be one entry of k routing table (a possible destination).
Let Nk be set of neighboring nodes of node k.
Let Pji be the probabilit y with which an ant or data packet in k, jumps to a node i, i
� Nk, when the destination is j (j�k). Then, for each of the N entries in the node k
routing table, it will be nk values of Pji subject to the condition:

 Pji
i Nk
�
å � 1 ; j=1,...,N . (1)

The following lines show AntNet1.0 pseudocode, using the symbols and
nomenclature already presented:

Argentine Symposium on Artificial Intell igence

BEGIN
{ Routing Tables Set-Up: For each node k the routing tables are initialized with a

uniform distribution:

 P
nji

k

� 1
 ,

�
i � Nk . (2)

 DO always (in parallel)
 { STEP 1: In regular time intervals, each node s launches an Fs�d ant to a

randomly chosen destination d.
 /*During its trip to d, when Fs�d reach a node k, (k�d), it does step 2* /
 DO (in parallel, for each Fs�d

 { STEP 2: Fs�d pushes in its stack Ss�d(k) the node k identifier and the
time elapsed between its launching from s to its arriving to k.

 Fs�d selects the next node to visit in two possible ways:
(a) It draws between i nodes, i � Nk, where each node i has a Pdi

probabilit y (in the k routing table) to be selected.
 IF the node selected in (a) was already visited

(b) It draws again, but with the same probabilit y for all
neighbor nodes i, i�Nk. Fs�d jumps to chosen node.
IF the selected node was already visited

STEP 3: A cycle is detected and Fs�d pops from its
stack all data related to the cycle nodes, since the
optimal path must not have any cycle. Fs�d comes
back to step 2 (a).

 END IF
 END IF

 }WHILE jumping node� d
 STEP 4: Fs�d generates another ant, called backward ant Bs�d. Fs�d

transfers to Bs�d its stack Ss�d and then dies.
 /*Bs�d, will follow the same path used by Fs�d, but in the opposing

direction, that is, from d to s* /
 DO (in parallel, for each Bs�d ant)
 { /*When Bs�d arrives from a node f, f � Nk to a k, it does step 5*/

 STEP 5: Bs�d updates the k routing table and list of trips, for the
entries regarding to nodes k’ between k and d inclusive, according to
the data carried in Ss�d (k’).

 IF k�s
 Bs�d will j ump from k to a node with identifier given by Ss�d (k-1)

 END IF
 }WHILE (k�s)

}
}
END

The routing table and list of trips updating methods for k are described as follows:

Argentine Symposium on Artificial Intell igence

1. The k routing table is updated for the entries corresponding to the nodes k’ between
k and d inclusive. For example, the updating approach for the d node, when Bs�d

arrives to k, coming from f, f � Nk is explained, next:� A Pdf probabilit y associated with the node f when it wants to update the data
corresponding to the d node is increased, according to:

Pdf � Pdf � (1 - r´).(1 - Pdf). (3)

where r´ is an adimensional measure, indicating how good (small) is the
elapsed trip time T with regard to what has been observed on average until
that instant. Experimentally, r’ is expressed as:

 r

T

c

T

c
'�

� �
�

	

�
�
�

c 1 if

otherwise

1

1

 (4)

where: � is the arithmetic observed trip time T average.
 c is a scale factor experimentally chosen like 2 (Dorigo 1997).
 More details about r’ and its significance can be found in (Dorigo 1997).� The other neighboring nodes (j�f) Pdj probabiliti es associated with node k are

diminished, in order to satisfy equation (1), through the expression:

Pdj � Pdj -(1 - r´)Pdj . � j � Nk , j � f (5)

2. A list tripk(�i,�i

2) of estimate arithmetic mean values �i and associated variances �i

2

for trip times from node k to all nodes i (i�k) is also updated. This data structure
represents a memory of the network state as seen by node k. The list trip is updated
with information carried by Bs�d ants in their stack Ss�d. For any node pair source-
destination, � after (n+1) samples (n>0) is calculated as follows:

� �
n

n nn x

n
� �� �

�
1

1

1
 (6)

where: xn+1 trip time T sample n+1,
 �n arithmetic mean after n trip time samples.

2.2. AntNet2.0 Algorithm

AntNet2.0 is an AntNet1.0 modified version (Dorigo 1998) with five main steps,
which perform basically the same actions as AntNet1.0. The differences are how the
routing tables and the lists trips (now known in as traff ic local model Mk) are updated.
Consequently, only these two differences will be explained.

Suppose that a Bs d arrives to a node k, in its return trip to node s. The Bs d ant will
update the traff ic local model Mk (list trip in AntNet1.0) and the neighbor nodes
probabiliti es of k associated to node d in the routing table

!
k . Also, as in AntNet1.0

step 5, the update is performed in the entries corresponding to every node k’ " Ss#d,
k’$d in the subpaths followed by Fs#d after visiting k. If a subpath trip time T is
statistically good (i.e: T is smaller than % + I(%,&), where I is a % interval confidence

Argentine Symposium on Artificial Intell igence

estimator), then T is used to update the statistics related and the routing table.
However, if T is bad, it is not used, because it doesn’ t give a true idea about the time
required to arrive to the subpath nodes. The traff ic local model Mk and the routing
table

�
k are updated for a generic destination d’ � Ss�d in the following way:

1. Mk is updated with the values carried in Ss�d. The trip time Tk�d’ employed by Fs�d

to travel from k to d’ is used to update �d’ , �d’

2 and the best observed value inside
window Wd’ according to the expressions:

().'''' ddkdd T ���� �	
 � (7)

()().2
'

2
''

2
'

2
' dddkdd T �
��� ���� � (8)

where � is the weight of each trip time observed. The effective number of samples
for will be approximately 5(1/�). Therefore, for 50 samples, �=0.1, and for 100
samples �=0.05. The role of Wd’ will be explained later.
The Tk�d’ mean value and its dispersion could vary strongly, depending on traff ic
conditions: a poor (large) time with low data traff ic could be very good with
relation to another measure with more traff ic. The statistical model should reflect
this variabilit y and continue the traff ic fluctuations in a robust way. This model
plays a critical role in routing table updating.

2. The routing table for k is updated in the following way:� The value Pfd’ (the probabilit y for selecting the neighbor node f, when the node
destination is d’) is incremented by means of the expression:

Pfd’ � Pfd’ + r(1-Pfd’). (9)

where r is a reinforcement factor indicating the goodness of the followed path.� The Pnd’ probabiliti es associated to the other nodes decreases respectively:

 Pnd’ � Pnd’
- r Pnd’. n � Nk, n�f (10)

The factor of reinforcement r is calculated considering three fundamental
aspects: (i) the paths should receive an increment in their probabilit y of selection,
proportional to their goodness, (ii) the goodness is a traff ic condition dependent
measure, that can be estimated by Mk, and (iii) they should not continue all the
traff ic fluctuations in order to avoid uncontrolled oscill ations. It is very important
to establish a commitment between stabilit y and adaptabilit y. Between several
tested alternatives (Dorigo 1998), expression (11) was chosen to calculate r:

 � � �(���
 !!"

#
$%&

&%'(
)*+

,-
infinfsup

infsup
21 ITII

II
c

T

W
cr best (11)

where: Wbest. best trip of an ant to node d’ , in the last observation window Wd’,
 I inf = Wbest . lower limit of the confidence interval for .,
 ()I z wsup / 0 12 3 . upper limit of the confidence interval for 4, with:

 ()567 11z , 8 = confidence level, 8 9 [0.75, 0.8].

 c1 and c2 are weight constants, chosen experimentally as c1=0.7 y c2=0.3.
More details about r and its significance can be found in (Dorigo 1998).

Argentine Symposium on Artificial Intell igence

3 Modifications Proposed to Improve Antnet

This section describes several modifications tested for AntNet1.0 and AntNet2.0,
in order to improve their performances.

3.1. Intelligent Initialization of Routing Tables

AntNet1.0 and AntNet2.0 don’ t specify an initialization method for the routing
tables (Dorigo 1997, 1998). For this reason, a uniform distribution of probabiliti es is
assumed, according to the initialization given in the pseudocode. Due to this situation
of null a-priori knowledge, it is proposed an initialization of each node routing table
that reflects a previous knowledge about network topology. Furthermore, an initial
greater probabilit y value is assigned to the neighboring nodes that simultaneously
could be destinations. For a node k this could be described as follows:

1. If a destination node d for a table entry is at the same time a neighbor node, that is
d� Nk, then the initial probabilit y in the routing table of k is given by:

 P
n

n

ndd
k

k

k

� � �
�1 3

2

1
2

() (12)

For the rest of the neighboring nodes i � Nk, it will be:

if nk>1

 (13)
if nk=1

Of course, (12) and (13) satisfy (1).

2. If the destination d is not a neighbor node, that is d � Nk, then a uniform
distribution is initially assumed:

 P
ndi

k

� 1 . (14)

Due to the advantage of network topology knowledge reflected by the initial
probabilit y values in the routing tables, this method showed a transient regime shorter
than the observed during simulations in AntNet1.0 and AntNet2.0.

 3.2 Intelligent Updating of Routing Tables after Network Resources Failures

Original AntNet algorithms (Dorigo 1997,1998) do not mention the following cases:
1. Routing tables updating in case of links or node failure, that is, immediately after a

node k loses its link lkj with its neighbor node j. In principle, it is supposed that if
an ant is in k, the probabilit y Pdj, for arrive to a destination d across a jumping node

P
n n

di

k k�

	

�

�

�

�
�

1 3

2

1

0

2

Argentine Symposium on Artificial Intell igence

j, that is, to use the link lkj, is distributed uniformly between the remaining nk -1
neighbor nodes for the entry d in the routing table of k. Mathematically, Pdj =0
during a link lkj failure (it isn’ t possible to jump from k to j for arriving to d).

 P P
P

ndi di

dj

k

� � �1
.
�

i�j i, j � Nk (15)

Alternatively, the present work proposes the idea of new Pdi values immediately
after the lkj link failure. These probabiliti es will be proportional to their relative
values, before the failure, according to the acquaintance until that instant, instead
of "forgetting" everything he learned until the moment of the failure, according to
(15). So, in a node k, after the lkj link failure, a factor Q is calculated like:

 Q
P

P
dj

dj

� �
1

. (16)

then, Pdi is updated according to:

P Q Pdi di
� 	
()1 . �i�j; i
 Nk, Pdj=0. (17)

This method reflects the node knowledge about the network traff ic and topology
before the failure, so during the event the algorithm should show a better
performance according to the original algorithms.

2. Routing table updating for the k-j node pair when the link lkj is up at time t2 (t2>0),
since this link was down at time t1, 0<t1<t2. AntNet1.0 and AntNet2.0 use a routing
table reinitialization for k and j according to (2), losing all i nformation learned
right before the link failure. As an alternative, this work proposes a reinitialization
subject to a commitment between learned information until i nstant t1, before the
link failure, and total ignorance of the node as in t= 0. So, the probabiliti es in the
routing table for a node k, whose link failed in t1, but recovered in t2 will be:

 Pdi(t2) = (1-
�

)Pdi(0) +
�

Pdi(t1). 0��<1 (18)

The factor � is a constant, known as coefficient of memory, since its value
indicates how much it remembers what it has learned until ti me t1. An empirical
value of 0,6 was adopted. This criterion makes more robust the algorithm allowing
a faster recovery time after link or node failure.

3.3 Introduction of a noise factor and limitation of probability values

With the routing tables updating methods in AntNet1.0 and AntNet2.0, the
distribution of probabiliti es eventually "would freeze" with any probabilit y value,
near to one, with the rest of them remaining with insignificant values. Thus, in any
node, ants and data packets would mostly choose the output line with the highest
probabilit y. In order to prevent this, it is defined a noise factor f, so, every time an ant
should jump to a following node, it chooses that node with a probabilit y f, according
to an uniform distribution probabilit y, and with a probabilit y (1-f), according to the

Argentine Symposium on Artificial Intell igence

values stored in the routing tables (Schoonderwoerd 1997). With this, the ants by
“accident” could discover new and better paths. So, potentially both the delay and
throughput could improve.

Also, any probabilit y in the routing tables was limited to a maximum value of: P=
1-(nk-1)* �, (experimentally, �=0.05), being �, the minimum probabilit y admitted.

3.4 Dual Method for selection of jumping node

In the AntNet1.0 and AntNet2.0 algorithms, being in a node k, a data packet,
whose destination is a node d�k, will select a jumping node j randomly, according to
Pdj,

�
j � Nk. Also, this work considers the possibilit y of selecting directly the output

line corresponding to node j with the highest probabilit y value in the routing table of
k, between the nk probabiliti es associated to node d. This last method is called
hierarchical method (Schoonderwoerd 1997).

As mentioned before, in each node, packets will decide randomly whether to use
the usual method (random) or the hierarchical method, in order to choose the jumping
node. Particularly, a better behavior for the case of P = 0.5 was observed, where P is
the probabilit y for the use of the random method, normally used in AntNet. So, for a
data packet, there will exist a probabilit y P = 0.5 of using the random approach, and a
probabilit y P � 0 5. of directly using a node, whose probabilit y is the highest in the k
routing table, for the destination d. For AntNet1.0 and AntNet2.0 P=1 is considered.

3.5 Control of the number of ants inside the network

AntNet1.0 and AntNet2.0 don’ t mention any method to maintain control of the
total numbers of ants moving inside the network, which, under certain circumstances,
could contribute to congestion. In order to control the number of ants, it was first
attempted to limit the maximum number of ants in an amount equal to the square of
the number network nodes. This approach was computationally very heavy, in
addition to requiring very large data structures. For this reason, the number of ants
was limited to an amount four times the number of network nodes. With this
alternative, the simulation results were improved and the computing load diminished.
So, this approach was adopted for the implemented algorithms.

3.6 Self-destruction of a Backward Ant

Self-destruction of a backward ant Bs�d refers to a Bs�d ant that can’ t return to its
source node, because its return trip was cut, due to a link or node failure. Under this
situation the ant is self-destroyed, because the information stored in its stack already
does not reflect the real state of the network. This point was very important, so it was
added to all the AntNet algorithms, including AntNet1.0 and AntNet2.0.

Argentine Symposium on Artificial Intell igence

4 Experimental Results

With the proposed modifications 2 alternative algorithms were implemented:
1. AntNet1.1: It is a modified version of AntNet1.0.
2. AntNet2.1: It is a modified version of AntNet2.0.
The main characteristics for the implemented algorithms are:
� All these algorithms have been implemented in C language.
� Parallel behavior simulated with serial code.
� A data traff ic simulation analysis is performed after each time slot.
For the simulations, three networks have been used as models:
1. A simple network, with 8 nodes, links with unitary cost, Fig. 1 (Dorigo 1998).
2. The NSFNET (National Science Foundation network) from the United States, with

14 nodes and 1.5 Mbps links. It is observed the links delay in [ms], Fig. 2.
3. The NTT network (Nippon Telephone Telegraph) of Japan, composed by 55 nodes

and links of 6 Mbps, Fig. 3.

Fig. 1. Simple Network Fig. 2. NSFNET

 Fig. 3. NTTnet

1

24

22

23

21

20

16

18

19

13
15

12

17

14

10

9

11

8

4

7

6

5

3

2
0

29

26

30

28

25

37

34

27

33

35

36

32
31

50

51

49

48

47

46

45

44

43

41

42

38
39

40

53

54

52

10

12

2023

21

20

15

12

18

12

18

15

17

22

40
17

17

20

21

20

15

14
1310

12 10 11

11

11

13 1711

12

11
11

12

10

17

16
11

12
16 11 15

23

17

11

12

11

10

19

16

23

50

20
12

11

12

21

27

20

11

22
28

16

21
17

12
27

19

13

1

8

7

6

3 4

5

2

1

1

1

1

1

1

1

1

1

1

4

2

3

5

6

7

10

8

9

14

13

12

11

7
7

7

7

8

11

9

16

5

8

7

5

4

8

14

15

7

9
9

13

20

Argentine Symposium on Artificial Intell igence

 A benchmark was established for the simulations. 12 simulation scenarios
compose our benchmark, as shown in Table 1. Each scenario was tested for each one
of the three model networks presented above.

Lost Packet
threshold

Transient
Regime

Link
Failure

Node
Failure

Hot
Spot

Low Traff ic 5%
� � � �

Medium Traff ic 10% � � � �
High Traff ic 20% � � � �

Table 1. Benchmark used for each model network

For each simulation cycle, the traffic simulator will stop generating packets when a
certain fraction (expressed in %) of the generated packet has not arrived to destination
(Lost Packet threshold). The link transmission delay is used as metric for link costs,
expressed in milli seconds. The performance parameters for the algorithms are:

� Instantaneous Packet Delay. It is the average delay of all data packets routed
successfully for a given instant t in the algorithm simulation.

� Average Packet Delay. It is the average delay of all data packets routed
successfully during the whole simulation period.

� Instantaneous Throughput. It is the amount of packets routed successfully for a
given instant t in the algorithm simulation.

� Average Throughput: It is the amount of packets routed successfully during the
whole simulation period.

Figures 4 to 7 and Tables 2 to 4 show the simulation results for some of the
experiments performed for the three mentioned networks and only for medium traff ic.
It is important to mention that the results obtained for the LBR algorithms were not as
good as first expected, so they will not be presented nor discussed for any of the
experiments to be considered. In the tables, THR stands for average throughput and
for AVP for average packet delay. The following abbreviations will be used for
AntNet algorithms: AntNet1.0=A1.0, AntNet1.1=A1.1, and so on.

In what follows, it will be presented the simulations results for the networks
mentioned:

1. Simple Network (Fig. 1): It is wanted to compare the routing methods used by the
traditional algorithms RIP and OSPF with A1.0. For this, it was simulated data
traff ic between nodes 1 and 6, with the following results.

� Throughput: A1.0 have a performance about three times better than RIP (Table 2).
This is so because there are three possible paths between nodes 1 and 6; two of
which have the same cost. In spite of this, RIP and OSPF send the packets only
through one path (the chosen best path). On the contrary, A1.0 distributes the load
between the three paths, proportionally to their goodness (cost).

� Packet Delay: In table 2 it is observed a packet delay greater in A1.0, because
approximately the third part of the packets is sent through the longest path.

Argentine Symposium on Artificial Intell igence

Algorithms THR [packets] AVP [ms]
RIP 2367 3.01

OSPF 2589 3
A1.0 7245 3.03
Table 2: Average parameters results

Clearly, as expected, AntNet has a better throughput at a price of a larger packet
delay, a situation that is founded in almost every experiment.

2. NSFNET (Fig. 2): Here are showed results for transient regime experiment for
AntNet algorithms (Table 3), and for a transitory link failure experiment (link 5-6,
see Fig. 3) (Fig 4-5, Table 3), concluding the following:

� Transient Regime: Table 3 indicates how the modified algorithms "learn" quicker
(better throughput and packet delay) than A1.0 and A2.0, due to using of the
routing tables intelli gent initialization (section 3.1) and the dual method for
jumping node selection by data packets (section 3.4). Also, the superiority of A2.1
is observed between all the algorithms.

� Link 5-6 Failure: Throughput. RIP and OSPF decay completely at the instant of
the failure (Fig. 4); however, the AntNet algorithms are not severely affected,
demonstrating their robustness for this type of failures. In particular, it is observed
in Table 3 that A2.1 has the best average throughput. Also, A1.1 overcome to A1.0
(Table 3), due to routing tables intelli gent reinitialization method (section 3.2).

� Link 5-6 Failure: Packet Delay. All algorithms are proportionally affected (Fig. 5),
while the inherent advantage of RIP and OSPF in this figure of merit remains.
Here, the modified AntNet algorithms also overcome A1.0 and A2.0.

 Fig. 4. Link 5-6 failure. Instant. throughput Fig. 5. Link 5-6 failure: Instant. Packet Delay

RIP OSPF A1.0 A1.1 A2.0 A2.1

Transient THR [packets] 3572.75 4509.77 4716.79 5008.4

Regime AVP [ms] 37.79 28.72 27.17 24.27

Link 5-6 THR [packets] 4347.61 4450.33 4605.02 4869.94 4844.56 5081.3

Failure AVP [ms] 21.06 20.1 28.53 26.81 25.58 24.25

Table 3. Experimental Results for Average throughput and Average packet delay

2500

3000

3500

4000

4500

5000

5500

15 105 195 285 375 465 555 645 735 825 915 1005

TIME [ms]

P
A

C
K

E
T

S

RIP

OSPF

A1.0

A1.1

A2.0

A2.1

18

23

28

33

38

43

48

15 105 195 285 375 465 555 645 735 825 915 1005

TIME [ms]

D
E

L
A

Y
 [

m
s]

RIP

OSPF

A1.0

A1.1

A2.0

A2.1

Argentine Symposium on Artificial Intell igence

3. NTTnet (Fig. 3): Experimental results are showed in for: link failure and hotspot.
� Link 31-32 failure Throughput. AntNet algorithms are more robust than RIP and

OSPF. A2.1 has the best average THR (Table 4) and A1.1 is better than A2.0.
� Link 31-32 Failure: Packet Delay. Again, our AntNet are the best (Table 4).
� Transient Hotspot: Throughput. Node 41 was chosen as a hotspot (Fig. 3). Here,

A2.1 is the best (Table 4), although finally, all AntNet converge to a similar
behavior (Fig. 6). AntNet algorithms show small oscill ations during the hotspot.

� Transient Hotspot: Packet Delay. A2.1 has the best behavior in presence of a
hotspot (Fig. 7), possibly due to change in the data traff ic spatial distribution,
caused by the hotspot. Table 4 shows the best average values for our AntNet.

 Fig. 13. Transient Hotspot. Instant. throughput Fig. 14. Transient Hotspot. Inst. packet delay

RIP OSPF A1.0 A1.1 A2.0 A2.1

Link 31-32 THR [packets] 10201.77 10803.32 9717.06 11061.8 10774.9 12879

Failure AVP [ms] 107.49 104.61 124.16 120.72 118.02 114.53

Transient THR [packets] 8736.23 8848.26 8891.3 11065.6 9423.13 11759

Hotspot AVP [ms] 104.26 102.63 123.19 119.41 116.25 112.58

Table 4. Experimental Results for Average throughput and Average packet delay

After the analysis of simulation results, these general conclusions can be done:
� Our AntNet have shorter transient regime than A1.0 and A2.0 (Table 3).
� AntNet algorithms are more robust than RIP and OSPF algorithms for link failure,

because their instantaneous throughput does not decay completely at instant of the
failure (Tables 3-4).

� For hotspots, the results suggest that AntNet algorithms are sensitive to changes in
the data traff ic geographical distribution, because oscill ations in the instantaneous
packet delay were observed, during the presence of the hotspot (Figs. 6, 7).

� In most of the experiments A2.1 showed the best performance.
� Among all the AntNet algorithms, A1.0 showed the worst performance, and it

never performed better than A2.0, due to the superior method used for the routing
tables and trip lists updating (Dorigo 1998). However, A2.0 proved worse than
A1.1 in some circumstances (Figs. 11,13), in spite of the fact this last algorithm is
based on A1.0, demonstrating the effectiveness of the modifications proposed.

0

2000

4000

6000

8000

10000

12000

14000

300 1500 2700 3900 5100 6300 7500 8700

TIME [ms]

P
A

C
K

E
T

S

RIP

OSPF

A1.0

A1.1

A2.0

A2.1

90

100

110

120

130

140

150

160

300 1500 2700 3900 5100 6300 7500 8700

TIME [ms]

D
E

L
A

Y
 [

m
s]

RIP

OSPF

A1.0

A1.1

A2.0

A2.1

Argentine Symposium on Artificial Intell igence

5 Conclusions

In this work two versions of AntNet algorithms were studied, a novel adaptive
routing technique for data networks, based on mobile agents, oriented towards packet
switching, such as Internet. After their study, two modified versions were presented.

 AntNet algorithms, in addition to RIP, OSPF and LBR (Back 1999) were
implemented and simulated. A better performance of our versions of AntNet was
observed in most of the experiments. The modifications implemented in our versions
that contributed more for a better behavior of them were: a) routing tables intelli gent
initialization and, b) dual method for selecting jumping node for data packets.

In general, the results of the experiments remained proportional (Sosa 2000).
Results obtained in a different simulation scope suggest that AntNet algorithms could
have better throughput as well as packet delay than RIP and OSPF (Dorigo 1997,
1998). If this is the case, it is expected that the modified algorithms proposed here
will have better performance than the original AntNet versions.

It is also expected an efficient AntNet behavior with: flow control, congestion and
admission schemes. Therefore, it can be inferred that the commercial implementation
of this algorithm may be feasible and it can even be considered its use in large
networks, such as Internet, as a future option.

References

Almirón, M., Barán, B., Chaparro, E.: Ant Distributed System for Solving the Traveling
Salesman Problem. 15th Informatic Latinoamerican Conference-CLEI, Vol. 2. Paraguay
(1999) 779-789

Bak, S., Cobb, J., Leiss, E.: Load Balancing Routing via Randomization. 15th Informatic
Latinoamerican Conference-CLEI, Vol. 2. Asuncion-Paraguay (1999) 999-1010

Dorigo, M., Di Caro, G.: AntNet. A Mobile Agents Approach to Adaptive Routing. Technical
Report, IRIDIA- Free Brussels University, Belgium (1997)

Dorigo, M., Di Caro, G.: AntNet. Distributed Stigmergetic Control for Communications
Networks. Journal of Artificial Intelli gence Research, Number 9 (1998) 317-365

Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 26.
Number 1 (1996) 1-13

Feit, S.: TCP/IP. Architecture, Protocols and Implementation. McGraw & Hill (1996)
Rutkowski, T.: Dimensioning the INTERNET. IEEE Internet Computing, Vol. 2. Number 2

(1998) 8-10
Schoonderwoerd, R., Holland, O., Bruten, J.: Ant-like agents for load balancing in

telecommunications networks. Hewlett-Packard Laboratories, Bristol-England (1997)
Shankar, A., Alaettinoglu, C., Matta, I.: Performance Comparison of Routing Protocols using

MaRS. Distance Vector versus Link-State. Technical Report, Maryland-USA (1992)
Sosa, R.: Improved AntNet. Algorithm for data routing based on mobile agents. Science and

Technology Faculty, Asuncion Catholic University, (2000) 47-79
Tanenbaum, A.: Computer Network. Prentice & Hall , Third Edition (1996)

