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ABSTRACT

This paper presents afisynchronous Team Algorithn{s-

Team) implementation, in a parallel heterogeneous

asynchronous environment, to optimize the designelidible
communication networks given the set of nodes assipte
links.

The proposed Team combines paraljgnetics algorithms
(GA), with different reliability calculation approachés a
network of personal computers, proving good expenial
results with considerable speedup.

Key Words: A-Teams, genetic algorithm, Monte Carlo
simulation, network design, network reliability.

1. INTRODUCTION

Network planning is concerned with the design dfigently
reliable networks at reasonable cost, to delivgh hgapacity
and speed [1]. Because of the lack of good netwledigning
tools, engineers have been using their experiendarduition
to design networks in many fields as telecommuitoat
electricity distribution, gas pipeline and computetworks.
But the oldtrial & error approach is not useful anymore for
very large-scale networks, as the ones being dedign
nowadays. Clearly, a computational automatic teaéguired.

For the present work, a reliable network designblanm is
stated asall-terminal network reliability (also known as
uniform or overall reliability). In this approach, every pair of
nodes needs a communication path to each othdr {Ba8 is,
the network forms at leastspanning treeThus, the primary
design problem is to choose enough links to intemect a
given set of nodes with a minimal cost, given aimim
network reliability to be attained. This minimizati design
problem is NP-hard [4], and as a further complaratbecause
the calculation of all-terminal reliability is al$¢P-hard.

Although several papers have been published onptioislem
or similar ones, no known method is efficient erfoug deal
with real large networks. In this context, Jan &t [&]

developed a branch and bound search to designdoifigected
networks, reporting results up to 12 nodes. Veataipoulos

and Singh [6] proposed an algorithm to create atiain
population for applying branch and bound. Atiqulaid Rao
[7] used a deterministic simulated annealing withact
calculation for very small networks. Another sintath
annealing technique was introduced by Pier eBjl.There are
some approaches using Tabu search, like the on€dover et
al. [9], Beltran & Skorkin-Kapov [10] and, Koh & eq11].

Several GA approaches have already been used fferedit
network design problems. Series and parallel systbave
been treated in [12-14]. Kumar et al. [15] caloetatheall-
terminal reliability with maximum network diameter constrgi
and expanded their work in [16]. Other related peois can be
found in Davis et al. [17] and in the work by Abdiwet al. [18-
19]. Walter and Smith [20] used GA to address ogtidesign
of a pipe network. Deeter and Smith [21] preserdeA
approach to minimize cost of a 5-node network waéthk
terminal reliability constraint. Dengiz et al. [2afldressed the
same problem using a fairly standard GA impleméonat
Lately, Dengiz et al. [23] have introduced a GAttheale-up
the size of tractable networks, but they solve detep
networks no larger than 11 nodes, a small numbrerefa size
problems.

Considering the complexity of designing reliabléwarks, and
the amount of different published method, this peobseems
to be a good candidate for Team algorithms (TA). i§Aa
technique, which combines distinct algorithms iatding in
the solution of the same global problem [24]. Te&lgorithms
can be naturally implemented in parallel assignitiferent
sub-problems to each processor of an asynchronistridted
system, like a computer network. This parallel asyanous
combination of different algorithms is known as Aadm
(Asynchronous Team) [25-27]. Baran et al. [28] hagbieved
excellent results applying this technique for hydectric
optimization, a different engineering goal with amitar
mathematical framework. Therefore, this paper psepothe
implementation of an A-Team, for the topologicatiopzation
of telecommunication networks, subject to relidbili
constraints.

The paper is organized in the following way: Setti states
the problem. The proposed method is introduceceatian 3,
with section 4 presents experimental results. Trelasion is
left for section 5.

" Also at the “Universidad Catélidduestra Sefiora de la AsunciénParaguay.



2. STATEMENT OF THE PROBLEM

A network is modeled by a probabilistic undirectgthph
G=(N, L, p), in which N represents the set of nodes, given
set of possible links, and p the reliability of kdmk. It is
assumed one bi-directional link between each phincales;
that is, there is no redundancy between nodes.

The optimization problem may be stated as:

N-1 N
Minimize Z=z Zcijxij 1)

=L j=itl

Subjecto: R(X)=R,

whereX; is a decision variable {0, 1] is the cost of a link (i,
i), R(x) is the network reliability, and Ris the minimum
reliability requirement.

To solve the problem, the following assumptionsraegle:

¢« The N nodes are perfectly reliable. A problem veithode
may be simulated by the failure of its incidenkén

* The costCj and the reliability p of each link (i,j) are
known.

» The links have two states: either operationgl £ 1) or
failed (Xj = 0).

¢ The links failures are independent.

« No repair is considered.

e Two-connectivity is required.

3. PROPOSED A-TEAM

The main algorithm consists of two kinds of proesssa
Coordinator and the PGAs (Parallel Genetic Algonish.
There is only one coordinator, which is responsdilereating
the PGA processes, collect their results and take of the
global statistics. The PGAs do the real work. Orthe
coordinator initializes all the processes, each RGAputes its
solutions, broadcasts its partial results to thhexst, and
receives what its peers have sent to it.

g
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Figure 1: Asynchronous Team (A-Team) implementation.

Coordinator

3.1. The Coordinator

First, the coordinator spawnB slaves processes, wheRe
depends on the number of available processorsthenctlative
performance between them. Work balance is requivechn

efficient implementation. There are several waybatance the

computational load using parallel genetic algorghffGA), as
example, with different population size in eachqassor. For
the present proposal, load balance is achievedubgimg a
different number of similar processes, dependingnuphe
relative performance of the processor.

The second task of the coordinator is to gathetigpaesults
sent by the PGAs, to check if a received solut®hetter than
the current one, and if this is the case, to replacAlso, it is
the coordinator responsibility to take the requirgkbbal
statistics. For instance, the global time is meadinere. At the
same time, the coordinator does the entire userfate work.

Finally, the coordinator checks the finishing aiiie For the
present implementation, it stops after being infednthat all
the PGAs have already satisfied a given finishioigdition.

START

SPAWN P PGAs

stop_counter=0

DO WHILE( stop_condition < P)
RECIVE candidate network N, and flag
“: (Nr IS better than Nbest) Nbest = Nr
IF (flag=STOP_CONDITION_REACHED)

stop_counter = stop_counter+1

ENDIF

ENDDO

KILL P PGAs

END

Pseudocode 1: Coordinator process.

3.2.Genetic Algorithm

The proposed GA is based on a previous work by Restcal.
[2] with the following main features:

e Al the network solutions keep the two connectivity
constraints; that is, there should be at least kwks
incident to each node.

e A specialized initialization is used to enhance the
efficiency of the search.

e The crossover and mutation operations are spesihliz
They are local search operators based on set aperat
(union, intersection, and subtraction).

e A repair algorithm is utilized to keep the networksder
the two-connectivity constraint.

e There are two different approaches to calculatevorkt
reliability. First, an upper bound of all the netko
candidates included in the population is efficigntl
calculated. Then, a computatioredpensivéMonte Carlo
simulation is used to get a real good approximatibthe
actual all-terminal reliability of the best candiels. That
way, a trade off between computational effort and
accuracy is achieved.

Encoding

In the present proposal, a network is encoded Biriag of
bits, where each bit represents the operability dink. The
position of the bit in the string matches the labkthe link
(see Figure 2). The coding is implemented at hiellein this
way, a network with up to 16 links can be save@dmsnteger
of 16 bits, where the highest order bit is labele@nd the bit
of lowest order is labeled 16. For Instance: thewvoek of



Figure 2 is encoded by (reading from left to right)
0101100000000000. Thus, the former network is sspreed
by the integer ¥ +2'2 +2!1 =22528.

In case of networks with more than 16 links, amywof integer
is used instead. As example: if a network has @lian array
of two integers is used. The first integer représéme first 16
links. The highest order bit of the second integggresents
link 17, and so on.

Figure 2: The dotted solid lines show where the lines are up
and the dotted line are the failure ones.

Parallel Implementation

There are several ways to implement a GA in a [gral
asynchronous environment. For the present workntickd
processes, called PGA®4drallel Genetic Algorithms are
assigned to different processors. Each PGA hasoits
population, randomly generated by each indepengietess.
The population size is maintained constant in eBA
process, even though it may receive any numberebfork
candidates from the peer processes. For that mapaigenetic
selectionoperator is used after asynchronously receiving any
number of candidates, to choose between the ownlgiign
and the incoming candidates (see Pseudocode 2)wHyathe
interaction between processes is performed, indéaging good
candidate networks. Everny generations, or when the PGA
find a new best network, a PGA broadcast his bestark to
share it with its peers. If is too large, there will be little
interaction, but if it is too small, there may lzede overhead
with premature convergence.

PGA genetic operators

A PGA uses basically the same mutation and crossove
operators presented in [23]. These are speciabpedators to
perform local search and preserve two-connectdystraints
using a repair algorithm. Both, mutation and cresspuse set
operators: union, intersection and subtraction.s€heperators
are efficiently implemented using bit operators (O&ND,
NOT).

On the other hand, the proposed selection opetiatarot
identical to the one presented in [23]. It has beetended to
deal with variable-size population, as explainedvab There
are several PGA running in parallel, and intercliramgartial
results with their peers. So, when a PGA doeseaxsen, it has
to select a constant number of candidates, amoaglast
population plus the recently arrived candidatesoider to
preserve population size.

The PGA objective function (OF)

A penalization is used in the objective function atiow
infeasible networks in the population, but prevegtthem to
be chosen as the best one. This is done becausenfeasible
networks can breed feasible solutions. A conskahas been
introduced to the penalization function proposed[48] to

increase this restriction. Initial studies indicatkat the
objective function formulae can be further improvesing a
variable penalization, to get an adaptive penatimatthat
would resemble a simulated annealing. For the pteserk,
the first variation is preferred to maintain conipitity with

Dengiz et al [23] results.

Z(x) = chij X +O(Cmaxk(R(X) = Ro))? (2)

10, if R(X)=R,
0= {10, if R(X)<R,

Cmax = themaximumvalueof c;
k aconstant

PGA stop-criteria

Each PGA runs independently of their peers, infagnihe
coordinator when it reaches a stop-criteria. Thare two
finishing criteria:
= convergence of the population to a homogenous
population;
=  maximum number of generations.

A PGA does not stop when its finishing criterionsetisfied,
because it may receive new network candidates frepeers.
It just informs the coordinator instead. The cooadoér is the
one in charge of testing general convergence altidgkithe
PGA processes.

At every generation, each member of the populatisn
compared to the best candidate. If a given netliasno more
than! links that are not in the best, this network issidered
similar to the best. When the average of similamwoeks is
more than a given percentage, the population isidered
homogenous.

The PGA Algorithm

A PGA process (see Pseudocode 2), has five mdis:tas

* to generate the initial population. A specializeetiod is
used to assure random and feasible network camrdidat

* to receive candidate networks that have been tiittesim
by the peers, and to apply selection over the whole
population (old population plus the arrived ond§)an
imported candidate is better than the best localan,
the later is replaced by the new arrived. That vthg,
penalization parameters are improved;

 to perform the regular GA operations (crossover and
mutation);

e to broadcast the best network it finds. That wagoad
candidate may be exported to other processes $evera
times. If the network is the global best at thisgj all the
PGA will adopt it and export it, until a new besttwork
appears. Each PGA transmits its best network egery
generations or when a new best appears;

« to inform the coordinator when a given finishingemia is
satisfied.



4. EXPERIMENTAL RESULTS

The experimental experiences have been performed @10
Mbps Ethernet network, with three personal computeith

Intel 80486 processors of different configurationshe
programs were written in C and the parallel implatagon

was done using PVM (Parallel Virtual Machine). The
processes have been assigned regarding the relative
performance to have a reasonable work balancesdtpeential

GA, used as reference, processes a populationPsigenes
larger than the one on the PGAs, where P is thebeurof
spawned PGA processes.

START

POPULATION pop[], pop_old[], imported]]

pop_size=s [*population size*/
gen=0 /*Generation number*/
exp_freq [*Export every exp_freq

generations*/
GENERATE_NEW_POPULATION ( pop_old )
FOR (i=1to s)
UPPER_BOUND(pop_old[i]) /*Reliability caltation*/
END FOR
ORDER_POP_BY_OF(pop_old) /*By objective function*/
Xpest= pop_old[1]
MONTE_CARLO (pop_old[1])
DO WHILE( TRUE )
IMPORT_NETWORKS
FOR (i=1 TO pop_size/2)
SELECT_TWO_NETWORKS
IF (RANDOM<crossover_rate)
GET_CHILDREN_BY_CROSSOVER

[*From other processes*/

ELSE
CLONE_CHILDREN_FROM_PARENT

ENDIF
IF (STOP_CRITERIA) INFORM_COORDINATOR
IF (RANDOM< mutation_rate) MUTATE_CHILD1
IF (RANDOM< mutation_rate) MUTATE_CHILD2
INSERT_CHILDREN(pop)

END FOR

ORDER(pop)

i=1

DO WHILE (pop[i]) better than,xt:AND i<pop_size)
MONTE CARLO (pop [i])
IF (popli]) better than pes)

POp[i]=Xoest
EXPORT (Xes)
END IF
i=i+1
END DO

IF (gen MOD exp_freq = 0) EXPORT{X)

Pseudocode 2: Parallel Genetic Algorithm — PGA.

For the present work, the reliability constraintredaxed to
allow performance comparisons between the sequé&wand
the A-Team. As discussed before, the penalizatimrctfon is
not sufficient to prevent almost reliable netwofkem being
chosen as the best solution, especially considenaggMonte
Carlo simulation only gives a good approximationaofiven
network reliability. Therefore, unfeasible solutsomith low
cost all-terminal reliability approximation that differs in no
more than 2%, are accepted as good solutions.

Figure 3 shows a typical running of the GA and the
implemented A-Team, plotting the temporary bestisoh as a
function of time. It can be seen that the A-Teamwenges
much faster than the GA. In fact, the GA satisfeinishing

criterion (by population homogenization) more th4@0 s
before the GA finds a similar quality solution.

245 —t—A-TEAM

225 1 —o0—CA
205 1
185
165 1
145% -
125 7

0 100 200 300 400

Objective Function

Time [s]

Figure 3: Typical running showing a fast convergence
of an A-Team.

Table 1 presents results over 10 runs when degjgairi0
nodes network that may be fully interconnected, there are
45 possible links. Each link has a reliability @8 and arall-
terminal reliability requirement of 95%. The testing network
design problem is extracted from a test-set pralide[23]. It
can be noted that the A-TEAM not only gets goodisohs,
but also a more predictable running time when costhdo
sequential GA.

A-TEAM Sequential GA

Run ggz Reliability T'[Sm]e ggz Reliability T'[Sm]e

1 140] 09412] 339 147 o0.9416] 230

2 143] 09374] 305 149] o0.9470] 719

3 153] 09458 1s8] 140] o0.9382] 341

4 139] 09360] 374] 135] 0.9323] 983

5 139] 09375] 192 140] o0.9446] 1480

6 142] 09444 155 142] 0.9364] 334

7 142] 09371] 177l 150] 0.9381] 640

8 141] 09464] 294 142] o0.9370] 1755

9 154| 09467| 351 139] 0.9340] 652

10 140 09379] 198 139] o0.9388] 669
Average 143.3] 0.94104| 254.3| 142.3] 0.9388 780.3
gg?gfi‘g?] 554 0.0044| 86.38] 4.85| 0.0043| 497.55

Table 1: Experimental results over 10 runs.
Table 2 shows the average over three runs of aonketslesign
problem with 50 nodes fully interconnected. As ¢Bnseen,
speedup scales very well indicating that the pregos-Team
can be used with advantage in the design of largkable
networks.

Best Cost Reliability Time [s]
GA 1536.5 0.8646 21481.5
A-TEAM 1383.3 0.8285 9302.3

Table 2: Average over 3 runs for a 50-nodes fully
connected network design.



5. CONCLUSIONS AND FUTURE WORK

The paper presented a network design problem duljgec
reliability constrain that is especially complexchase not only
the design itself is NP-hard, but also the exadiabity
calculation. For this reason, several different hnds have
been published but none of them is efficient enotmbolve
network size of nowadays.

The complexity of the design and the variety of ptetely
different algorithms, each one with its own strénghake of
this problem an ideal field for testing Asynchrosolieam
Algorithms, a technique to exploit available comgrytower of
asynchronous distributed systems, as computer nietw@he
idea behind this proposal is to combine differdgbathms, as
the two implemented in the reliability calculatioto, get the
best of each one in what each is good for. Indbigext, it was
proposed a parallel (-specialized) Genetic Algaonitfor the
design problem, while an upper bound calculatiod Btonte
Carlo simulation were used for network reliabilggtimation.
By combining all those algorithms in a network efi#able
personal computers, good results are found, witisiderable
speedup that scales very well with the size ofptfodlem.

Considering that most modern organizations todag la@cess
to a good number of computers interconnected throag
network, the presented technique gives an ideatoagp to
solve very large and complex problems as the desfigaliable
networks. Furthermore, using the same ideas wittively
little change in the presented implementation, dhthors are
studying a variety of similar design problems, tas following
ones:
= Maximize reliability of a network, given a maximum
budget.
= Design of reliable networks with different kind of
links as: optical fiber, wireless communication,
telephone lines, etc., (with or without redundancy)
= Design of reliable networks with other constraiss a

maximum number of hops between any two nodes,

minimum total throughput, maximum delay, etc.

There is work to do, but A-Teams promise to be & g®od
tool for treating large and complex problems in emd
internetworked environments.
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