

 Topological Optimization of Reliable Networks using A-Teams

Benjamín Barán Fabián Laufer*

bbaran@cnc.una.py flaufer@conexion.com.py

National Computer Center
National University of Asuncion

P.O.BOX 1439
University Campus of San Lorenzo – Paraguay

Tel./Fax: (595)(21) 585-619 and 585-550
http://www.cnc.una.py

* Also at the “Universidad Católica Nuestra Señora de la Asunción” – Paraguay.

ABSTRACT

This paper presents an Asynchronous Team Algorithms (A-
Team) implementation, in a parallel heterogeneous
asynchronous environment, to optimize the design of reliable
communication networks given the set of nodes an possible
links.
The proposed Team combines parallel genetics algorithms
(GA), with different reliability calculation approaches in a
network of personal computers, proving good experimental
results with considerable speedup.

Key Words: A-Teams, genetic algorithm, Monte Carlo
simulation, network design, network reliability.

1. INTRODUCTION

Network planning is concerned with the design of sufficiently
reliable networks at reasonable cost, to deliver high capacity
and speed [1]. Because of the lack of good network designing
tools, engineers have been using their experience and intuition
to design networks in many fields as telecommunications,
electricity distribution, gas pipeline and computer networks.
But the old trial & error approach is not useful anymore for
very large-scale networks, as the ones being designed
nowadays. Clearly, a computational automatic tool is required.

For the present work, a reliable network design problem is
stated as all-terminal network reliability (also known as
uniform or overall reliability). In this approach, every pair of
nodes needs a communication path to each other [2,3]; that is,
the network forms at least a spanning tree. Thus, the primary
design problem is to choose enough links to interconnect a
given set of nodes with a minimal cost, given a minimum
network reliability to be attained. This minimization design
problem is NP-hard [4], and as a further complication because
the calculation of all-terminal reliability is also NP-hard.

Although several papers have been published on this problem
or similar ones, no known method is efficient enough to deal
with real large networks. In this context, Jan et al. [5]
developed a branch and bound search to design fully connected
networks, reporting results up to 12 nodes. Ventetsanopoulos

and Singh [6] proposed an algorithm to create an initial
population for applying branch and bound. Atiqullah and Rao
[7] used a deterministic simulated annealing with exact
calculation for very small networks. Another simulated
annealing technique was introduced by Pier et al. [8]. There are
some approaches using Tabu search, like the ones by Glover et
al. [9], Beltran & Skorkin-Kapov [10] and, Koh & Lee [11].

Several GA approaches have already been used for different
network design problems. Series and parallel systems have
been treated in [12-14]. Kumar et al. [15] calculated the all-
terminal reliability with maximum network diameter constraint,
and expanded their work in [16]. Other related problems can be
found in Davis et al. [17] and in the work by Abouali et al. [18-
19]. Walter and Smith [20] used GA to address optimal design
of a pipe network. Deeter and Smith [21] presented a GA
approach to minimize cost of a 5-node network with all-
terminal reliability constraint. Dengiz et al. [22] addressed the
same problem using a fairly standard GA implementation.
Lately, Dengiz et al. [23] have introduced a GA that scale-up
the size of tractable networks, but they solve complete
networks no larger than 11 nodes, a small number for real size
problems.

Considering the complexity of designing reliable networks, and
the amount of different published method, this problem seems
to be a good candidate for Team algorithms (TA). TA is a
technique, which combines distinct algorithms interacting in
the solution of the same global problem [24]. Team Algorithms
can be naturally implemented in parallel assigning different
sub-problems to each processor of an asynchronous distributed
system, like a computer network. This parallel asynchronous
combination of different algorithms is known as A-Team
(Asynchronous Team) [25-27]. Baran et al. [28] have achieved
excellent results applying this technique for hydroelectric
optimization, a different engineering goal with a similar
mathematical framework. Therefore, this paper proposes the
implementation of an A-Team, for the topological optimization
of telecommunication networks, subject to reliability
constraints.
The paper is organized in the following way: Section 2 states
the problem. The proposed method is introduced in section 3,
with section 4 presents experimental results. The conclusion is
left for section 5.

2. STATEMENT OF THE PROBLEM

A network is modeled by a probabilistic undirected graph
G=(N, L, p), in which N represents the set of nodes, L a given
set of possible links, and p the reliability of each link. It is
assumed one bi-directional link between each pair of nodes;
that is, there is no redundancy between nodes.

The optimization problem may be stated as:

(1)

)(: 0

1

1

1

RxRtoSubject

xcZMinimize
N

ij
ijij

N

i

≥

= ��
+=

−

=

where xij is a decision variable {0, 1}, cij is the cost of a link (i,
j), R(x) is the network reliability, and R0 is the minimum
reliability requirement.

To solve the problem, the following assumptions are made:

• The N nodes are perfectly reliable. A problem with a node
may be simulated by the failure of its incident links.

• The cost cij and the reliability pij of each link (i,j) are
known.

• The links have two states: either operational (xij = 1) or

failed (xij = 0).
• The links failures are independent.
• No repair is considered.
• Two-connectivity is required.

3. PROPOSED A-TEAM

The main algorithm consists of two kinds of processes, a
Coordinator and the PGAs (Parallel Genetic Algorithms).
There is only one coordinator, which is responsible of creating
the PGA processes, collect their results and take note of the
global statistics. The PGAs do the real work. Once the
coordinator initializes all the processes, each PGA computes its
solutions, broadcasts its partial results to the others, and
receives what its peers have sent to it.

Figure 1: Asynchronous Team (A-Team) implementation.

3.1. The Coordinator

First, the coordinator spawns P slaves processes, where P
depends on the number of available processors, and the relative
performance between them. Work balance is required for an
efficient implementation. There are several ways to balance the

computational load using parallel genetic algorithms (PGA), as
example, with different population size in each processor. For
the present proposal, load balance is achieved by running a
different number of similar processes, depending upon the
relative performance of the processor.

The second task of the coordinator is to gather partial results
sent by the PGAs, to check if a received solution is better than
the current one, and if this is the case, to replace it. Also, it is
the coordinator responsibility to take the required global
statistics. For instance, the global time is measured here. At the
same time, the coordinator does the entire user interface work.

Finally, the coordinator checks the finishing criteria. For the
present implementation, it stops after being informed that all
the PGAs have already satisfied a given finishing condition.

 START
 SPAWN P PGAs
 stop_counter=0
 DO WHILE(stop_condition < P)
 RECIVE candidate network Nr and flag
 IF (Nr is better than Nbest) Nbest = Nr
 IF (flag=STOP_CONDITION_REACHED)
 stop_counter = stop_counter+1
 ENDIF
 ENDDO
 KILL P PGAs
 END

Pseudocode 1: Coordinator process.

3.2.Genetic Algorithm

The proposed GA is based on a previous work by Dengiz et al.
[2] with the following main features:

• All the network solutions keep the two connectivity

constraints; that is, there should be at least two links
incident to each node.

• A specialized initialization is used to enhance the
efficiency of the search.

• The crossover and mutation operations are specialized.
They are local search operators based on set operations
(union, intersection, and subtraction).

• A repair algorithm is utilized to keep the networks under
the two-connectivity constraint.

• There are two different approaches to calculate network
reliability. First, an upper bound of all the network
candidates included in the population is efficiently
calculated. Then, a computational expensive Monte Carlo
simulation is used to get a real good approximation of the
actual all-terminal reliability of the best candidates. That
way, a trade off between computational effort and
accuracy is achieved.

Encoding

In the present proposal, a network is encoded by a string of
bits, where each bit represents the operability of a link. The
position of the bit in the string matches the label of the link
(see Figure 2). The coding is implemented at bit level, in this
way, a network with up to 16 links can be saved as an integer
of 16 bits, where the highest order bit is labeled 1, and the bit
of lowest order is labeled 16. For Instance: the network of

Coordinator

PGA-1 PGA-2 PGA-p

. . .

 6

 5

 2 3

 4 1

Figure 2: The dotted solid lines show where the lines are up,
and the dotted line are the failure ones.

Figure 2 is encoded by (reading from left to right):
0101100000000000. Thus, the former network is represented
by the integer 214 +212 +211 =22528.

In case of networks with more than 16 links, an array of integer
is used instead. As example: if a network has 20 links, an array
of two integers is used. The first integer represents the first 16
links. The highest order bit of the second integer represents
link 17, and so on.

Parallel Implementation

There are several ways to implement a GA in a parallel
asynchronous environment. For the present work, identical
processes, called PGAs (Parallel Genetic Algorithms) are
assigned to different processors. Each PGA has its own
population, randomly generated by each independent process.
The population size is maintained constant in each PGA
process, even though it may receive any number of network
candidates from the peer processes. For that porpoise, a genetic
selection operator is used after asynchronously receiving any
number of candidates, to choose between the own population
and the incoming candidates (see Pseudocode 2). That way, the
interaction between processes is performed, interchanging good
candidate networks. Every g generations, or when the PGA
find a new best network, a PGA broadcast his best network to
share it with its peers. If g is too large, there will be little
interaction, but if it is too small, there may be large overhead
with premature convergence.

PGA genetic operators

A PGA uses basically the same mutation and crossover
operators presented in [23]. These are specialized operators to
perform local search and preserve two-connectivity constraints
using a repair algorithm. Both, mutation and crossover, use set
operators: union, intersection and subtraction. These operators
are efficiently implemented using bit operators (OR, AND,
NOT).

On the other hand, the proposed selection operator is not
identical to the one presented in [23]. It has been extended to
deal with variable-size population, as explained above. There
are several PGA running in parallel, and interchanging partial
results with their peers. So, when a PGA does a selection, it has
to select a constant number of candidates, among the last
population plus the recently arrived candidates, in order to
preserve population size.

The PGA objective function (OF)

A penalization is used in the objective function to allow
infeasible networks in the population, but preventing them to
be chosen as the best one. This is done because two unfeasible
networks can breed feasible solutions. A constant k has been
introduced to the penalization function proposed in [23] to
increase this restriction. Initial studies indicate that the
objective function formulae can be further improved using a
variable penalization, to get an adaptive penalization that
would resemble a simulated annealing. For the present work,
the first variation is preferred to maintain compatibility with
Dengiz et al [23] results.

(2)

 {

constantak

cofvaluemaximumthec

RxRkcxcxZ

ijmax

RxRif
RxRif

maxijij

=

=

−+=

≥
<

��

0

0

0
10

2
0

)(,
)(,

)))((()(

δ

δ

PGA stop-criteria

Each PGA runs independently of their peers, informing the
coordinator when it reaches a stop-criteria. There are two
finishing criteria:

� convergence of the population to a homogenous
population;

� maximum number of generations.

A PGA does not stop when its finishing criterion is satisfied,
because it may receive new network candidates from its peers.
It just informs the coordinator instead. The coordinator is the
one in charge of testing general convergence and killing the
PGA processes.

At every generation, each member of the population is
compared to the best candidate. If a given network has no more
than l links that are not in the best, this network is considered
similar to the best. When the average of similar networks is
more than a given percentage, the population is considered
homogenous.

The PGA Algorithm

A PGA process (see Pseudocode 2), has five main tasks:
• to generate the initial population. A specialized method is

used to assure random and feasible network candidates;
• to receive candidate networks that have been transmitted

by the peers, and to apply selection over the whole
population (old population plus the arrived ones). If an
imported candidate is better than the best local network,
the later is replaced by the new arrived. That way, the
penalization parameters are improved;

• to perform the regular GA operations (crossover and
mutation);

• to broadcast the best network it finds. That way, a good
candidate may be exported to other processes several
times. If the network is the global best at this time, all the
PGA will adopt it and export it, until a new best network
appears. Each PGA transmits its best network every g
generations or when a new best appears;

• to inform the coordinator when a given finishing criteria is
satisfied.

4. EXPERIMENTAL RESULTS

The experimental experiences have been performed over a 10
Mbps Ethernet network, with three personal computers with
Intel 80486 processors of different configurations. The
programs were written in C and the parallel implementation
was done using PVM (Parallel Virtual Machine). The
processes have been assigned regarding the relative
performance to have a reasonable work balance. The sequential
GA, used as reference, processes a population size P times
larger than the one on the PGAs, where P is the number of
spawned PGA processes.

Pseudocode 2: Parallel Genetic Algorithm – PGA.

For the present work, the reliability constraint is relaxed to
allow performance comparisons between the sequential GA and
the A-Team. As discussed before, the penalization function is
not sufficient to prevent almost reliable networks from being
chosen as the best solution, especially considering that Monte
Carlo simulation only gives a good approximation of a given
network reliability. Therefore, unfeasible solutions with low
cost all-terminal reliability approximation that differs in no
more than 2%, are accepted as good solutions.

Figure 3 shows a typical running of the GA and the
implemented A-Team, plotting the temporary best solution as a
function of time. It can be seen that the A-Team converges
much faster than the GA. In fact, the GA satisfies a finishing

criterion (by population homogenization) more than 400 s
before the GA finds a similar quality solution.

Figure 3: Typical running showing a fast convergence
of an A-Team.

Table 1 presents results over 10 runs when designing a 10
nodes network that may be fully interconnected, i.e. there are
45 possible links. Each link has a reliability of 90% and an all-
terminal reliability requirement of 95%. The testing network
design problem is extracted from a test-set provided in [23]. It
can be noted that the A-TEAM not only gets good solutions,
but also a more predictable running time when compared to
sequential GA.

 A-TEAM Sequential GA

Run Best
Cost

Reliability Time
[s]

Best
Cost

Reliability Time
[s]

1 140 0.9412 339 147 0.9416 230

2 143 0.9374 305 149 0.9470 719

3 153 0.9458 158 140 0.9382 341

4 139 0.9360 374 135 0.9323 983

5 139 0.9375 192 140 0.9446 1480

6 142 0.9444 155 142 0.9364 334

7 142 0.9371 177 150 0.9381 640

8 141 0.9464 294 142 0.9370 1755

9 154 0.9467 351 139 0.9340 652

10 140 0.9379 198 139 0.9388 669

Average 143.3 0.94104 254.3 142.3 0.9388 780.3
Standard
Deviation

5.54 0.0044 86.38 4.85 0.0043 497.55

Table 1: Experimental results over 10 runs.
Table 2 shows the average over three runs of a network design
problem with 50 nodes fully interconnected. As can be seen,
speedup scales very well indicating that the proposed A-Team
can be used with advantage in the design of larger reliable
networks.

 Best Cost Reliability Time [s]

GA 1536.5 0.8646 21481.5

A-TEAM 1383.3 0.8285 9302.3

Table 2: Average over 3 runs for a 50-nodes fully
connected network design.

START
POPULATION pop[], pop_old[], imported[]
pop_size=s /*population size*/
gen=0 /*Generation number*/
exp_freq /*Export every exp_freq
generations*/
GENERATE_NEW_POPULATION (pop_old)
FOR (i=1 to s)
 UPPER_BOUND(pop_old[i]) /*Reliability calculation*/
END FOR
ORDER_POP_BY_OF(pop_old) /*By objective function*/
xbest = pop_old[1]
MONTE_CARLO (pop_old[1])
DO WHILE(TRUE)
 IMPORT_NETWORKS /*From other processes*/
 FOR (i=1 TO pop_size/2)

SELECT_TWO_NETWORKS
 IF (RANDOM<crossover_rate)
 GET_CHILDREN_BY_CROSSOVER
 ELSE

 CLONE_CHILDREN_FROM_PARENT
S
 ENDIF
 IF (STOP_CRITERIA) INFORM_COORDINATOR
 IF (RANDOM< mutation_rate) MUTATE_CHILD1
 IF (RANDOM< mutation_rate) MUTATE_CHILD2
 INSERT_CHILDREN(pop)
 END FOR
 ORDER(pop)
 i=1
 DO WHILE (pop[i]) better than xbest AND i<pop_size)
 MONTE CARLO (pop [i])
 IF (pop[i]) better than xbest)
 pop[i]=xbest

 EXPORT(Xbest)
 END IF
 i=i+1
 END DO
 IF (gen MOD exp_freq = 0) EXPORT(Xbest)
 gen=gen+1

125

145

165

185

205

225

245

0 100 200 300 400

Time [s]

O
b

je
ct

iv
e

F
u

n
ct

io
n

A-TEAM

GA

5. CONCLUSIONS AND FUTURE WORK

The paper presented a network design problem subject to
reliability constrain that is especially complex because not only
the design itself is NP-hard, but also the exact reliability
calculation. For this reason, several different methods have
been published but none of them is efficient enough to solve
network size of nowadays.

The complexity of the design and the variety of completely
different algorithms, each one with its own strength, make of
this problem an ideal field for testing Asynchronous Team
Algorithms, a technique to exploit available computer power of
asynchronous distributed systems, as computer networks. The
idea behind this proposal is to combine different algorithms, as
the two implemented in the reliability calculation, to get the
best of each one in what each is good for. In this context, it was
proposed a parallel (-specialized) Genetic Algorithm for the
design problem, while an upper bound calculation and Monte
Carlo simulation were used for network reliability estimation.
By combining all those algorithms in a network of available
personal computers, good results are found, with considerable
speedup that scales very well with the size of the problem.

Considering that most modern organizations today have access
to a good number of computers interconnected through a
network, the presented technique gives an ideal approach to
solve very large and complex problems as the design of reliable
networks. Furthermore, using the same ideas with relatively
little change in the presented implementation, the authors are
studying a variety of similar design problems, as the following
ones:

� Maximize reliability of a network, given a maximum
budget.

� Design of reliable networks with different kind of
links as: optical fiber, wireless communication,
telephone lines, etc., (with or without redundancy).

� Design of reliable networks with other constrains as:
maximum number of hops between any two nodes,
minimum total throughput, maximum delay, etc.

There is work to do, but A-Teams promise to be a very good
tool for treating large and complex problems in modern
internetworked environments.

ACKNOWLEGMENT

To Professor Alice E. Smith, for her collaboration.

REFERENCES

[1] Colbourn C.J., “Reliability Issues in Telecommunication
Network Planning, University of Vermont.
http://www.emba.uvm.edu/~colbourn.

[2] Colbourn C.J., “The Combinatorics of Network
Reliability.” Oxford Univ. Press, 1987.

[3] R.H. Jan. “Design of reliable networks.” Comput. Oper.
Res. Vol 20, pp 25-34, 1993.

[4] M.R. Garey and D.S. Johnson. “Computers and
Intractability: A Guide to the Theory of NP-
Completeness.” San Francisco, CA: Freeman, 1979.

[5] R.H. Jan, F J. Hwang, and S. T. Cheng, “Topological
optimization of a communication network subject to a
reliability constraint. ” IEEE Trans. Reliability, vol. 42,
pp. 63-70, 1993.

[6] A. N. Vetetsanopoulos and I. Singh, “Topological
optimization of communication networks subject to
reliability constraint.” Problem of Contr. Inform.
Theory, vol. 15 pp. 63-78, 1986.

[7] M. M. Atiqullah and S. S. Rao, “Reliability optimization
of comunication network using simulated annealing,”
Microelectronics and Reliability, vol. 33, pp. 1303-1319,
1993.

[8] S. Pierre, M. A. Hyppolite, J. M. Bourjolly and O.
Dioume, “Topological desing of computer
communication network using simulated annealing” Eng.
Applicat. Artificial Intell., vol. 8, pp. 61-69, 1995.

[9] F. Glover, M. Lee and J. Ryan, “Least-cost network
topology design for a new service: An application of a
tabu search,” Ann. Oper. Res., vol. 33, pp. 351-362,
1991.

[10] H. F. Beltran and D. Skorin-Kapov, “On minimum cost
isolated failure immune network,” Telecommun. Syst.,
vol. 3, pp. 183-200, 1994.

[11] S. J. Koh and C. Y. Lee, “A tabu search for the
survivable fiber optic communication network design,”
Comput. Ind. Eng., vol. 28, pp. 689-700, 1995.

[12] D. W. Coit and A. E. Smith, “Reliability optimization of
series-parallel systems using a genetic algorithm,” IEEE
Trans. Reliability, vol. 45, pp. 254-260, 1996.

[13] K. Ida, M. Gen and T. Yokota, “System reliability
optimization of series-parallel systems using a genetic
algorithm,” in Proc. 16th Int. Conf. Computers and
Industrial Engineering, 1994, pp. 349-352.

[14] L. Painton and J. Campbell, “Genetic algorithms in
optimization of system reliability,” IEEE Trans.
Reliability, vol. 44, pp. 172-178, 1995.

[15] A. Kumar, R. M. Pathak, Y. P. Gupta and H. R. Parsaei,
“A genetic algorithm for distributed system topology
design,” Comp. Ind. Eng.,vol. 28, pp. 659-670, 1995.

[16] A. Kumar, R. M. Pathak and Y. P. Gupta, “A genetic
algorithm based reliability optimization for computer
network expansion,” IEEE Trans. Reliability, vol. 44, pp.
63-72, 1995.

[17] L. Davis, D. Orvosh, A. Cox and Y. Qui, “A genetic
algorithm for survival network design,” in Proc. 5th Int
Conf. Genetic Algorithms, 1993, pp. 408-415.

[18] F. N. Abuali, D. A. Schoenefeld and R. L. Wainwright,
“Terminal assignment in communication network using
genetic algorithm,” in Proc. ACM Computer Science
Conf., 1994, pp. 74-81.

[19] F. N. Abuali, D. A. Schoenefeld and R. L. Wainwright,
“Designing telecommunications networks using genetic
algorithm and probabilistic minimum spannig trees,” in
Proc. 1994 ACM Symp. Applied Computing, 1994, pp.
242-246.

[20] G. A. Walters and D. K. Smith, “Evolutionary design
algorithm for optimal layout of tree networks,” Eng.
Optim., vol. 24, pp. 261-281, 1995.

[21] D. L. Deeter and A. E. Smith, “Heuristic optimization of
network design considering all-terminal reliability,” in
Proc. Reliability and Maintaninnability Symp., 1997, pp.
194-199.

 [23] Dengiz B., Altiparmak F., & Smith A.E. "Local Search
Genetic Algorithm for Optimal Design of Reliable
Networks," IEEE Transactions on Evolutionary
Computation, Vol. 1, No. 3, 1997, pp. 179-188.

[24] Barán B., Kaskurewicz E., Bhaya A., “Parallel
Asynchronous Team Algorithms: Convergence and

Performance Analiys,” IEEE Transactions on Paralell
and Distribuited Systems, Vol. 7, NO. 7, 1996.

[25] Souza P. S. y Talukdar S. N. “Genetics Algorithms in
Asynchronous Teams,” ICGA- 91, pp. 392-397, San
Diego – California, 1991.

[26] “A-Teams Project Home Page”. Carnegie Mellon
University. URL:
http://www.cs.cmu.edu/afs/cs/project/edrc-
22/project/ateams/WWW/home_page.html

[27] Souza P. S. and Favilla J. R., “Asynchronous Teams for
Steel Industry: Mini Mills,” ISAS´96. Orlando- Florida,
USA, 1996.

[28] Barán B., Chaparro E. and Cáceres N., ”A-Teams en la
optimización del caudal turbinado de una represa
hidroeléctrica.” IBERAMIA´98 pp.187-199, 1998.

[29] D. E. Goldberg, “Genetic Algorithms in Search
Optimization and Machine Learning.” Reading, MA:
Addison-Wesley, 1989.

[30] M. S. Yeh, J. S. Lin, and W. C. Yeh, “New Monte
Carlo method for estimating network reliability.” In
Proc. 16th Int. Conf. Computers & Industrial
Engineering, 1994, pp. 723-726.

