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ABSTRACT 
 

This paper presents an Asynchronous Team Algorithms (A-
Team) implementation, in a parallel heterogeneous 
asynchronous environment, to optimize the design of reliable 
communication networks given the set of nodes an possible 
links.  
The proposed Team combines parallel genetics algorithms 
(GA), with different reliability calculation approaches in a 
network of personal computers, proving good experimental 
results with considerable speedup. 
 
Key Words: A-Teams, genetic algorithm, Monte Carlo 
simulation, network design, network reliability. 
 
 

1. INTRODUCTION 
 
Network planning is concerned with the design of sufficiently 
reliable networks at reasonable cost, to deliver high capacity 
and speed [1].  Because of the lack of good network designing 
tools, engineers have been using their experience and intuition 
to design networks in many fields as telecommunications, 
electricity distribution, gas pipeline and computer networks. 
But the old trial & error  approach is not useful anymore for 
very large-scale networks, as the ones being designed 
nowadays. Clearly, a computational automatic tool is required.  
 
For the present work, a reliable network design problem is 
stated as all-terminal network reliability (also known as 
uniform or overall reliability). In this approach, every pair of 
nodes needs a communication path to each other [2,3]; that is, 
the network forms at least a spanning tree. Thus, the primary 
design problem is to choose enough links to interconnect a 
given set of nodes with a minimal cost, given a minimum 
network reliability to be attained. This minimization design 
problem is NP-hard [4], and as a further complication because 
the calculation of all-terminal reliability is also NP-hard. 
 
Although several papers have been published on this problem 
or similar ones, no known method is efficient enough to deal 
with real large networks. In this context, Jan et al. [5] 
developed a branch and bound search to design fully connected 
networks, reporting results up to 12 nodes. Ventetsanopoulos 

and Singh [6] proposed an algorithm to create an initial 
population for applying branch and bound. Atiqullah and Rao 
[7] used a deterministic simulated annealing with exact 
calculation for very small networks. Another simulated 
annealing technique was introduced by Pier et al. [8]. There are 
some approaches using Tabu search, like the ones by Glover et 
al. [9], Beltran & Skorkin-Kapov [10] and, Koh & Lee [11]. 
 
Several GA approaches have already been used for different 
network design problems. Series and parallel systems have 
been treated in [12-14]. Kumar et al. [15] calculated the all-
terminal reliability with maximum network diameter constraint, 
and expanded their work in [16]. Other related problems can be 
found in Davis et al. [17] and in the work by Abouali et al. [18-
19]. Walter and Smith [20] used GA to address optimal design 
of a pipe network. Deeter and Smith [21] presented a GA 
approach to minimize cost of a 5-node network with all-
terminal reliability constraint. Dengiz et al. [22] addressed the 
same problem using a fairly standard GA implementation. 
Lately, Dengiz et al. [23] have introduced a GA that scale-up 
the size of tractable networks, but they solve complete 
networks no larger than 11 nodes, a small number for real size 
problems.  
 
Considering the complexity of designing reliable networks, and 
the amount of different published method, this problem seems 
to be a good candidate for Team algorithms (TA). TA is a 
technique, which combines distinct algorithms interacting in 
the solution of the same global problem [24]. Team Algorithms 
can be naturally implemented in parallel assigning different 
sub-problems to each processor of an asynchronous distributed 
system, like a computer network. This parallel asynchronous 
combination of different algorithms is known as A-Team 
(Asynchronous Team) [25-27]. Baran et al. [28] have achieved 
excellent results applying this technique for hydroelectric 
optimization, a different engineering goal with a similar 
mathematical framework. Therefore, this paper proposes the 
implementation of an A-Team, for the topological optimization 
of telecommunication networks, subject to reliability 
constraints. 
The paper is organized in the following way: Section 2 states 
the problem. The proposed method is introduced in section 3, 
with section 4 presents experimental results. The conclusion is 
left for section 5. 



 
2. STATEMENT OF THE PROBLEM 

 
A network is modeled by a probabilistic undirected graph 
G=(N, L, p), in which N represents the set of nodes, L a given 
set of possible links, and p the reliability of each link. It is 
assumed one bi-directional link between each pair of nodes; 
that is, there is no redundancy between nodes. 
 
The optimization problem may be stated as: 
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where xij  is a decision variable {0, 1}, cij  is the cost of a link (i, 
j), R(x) is the network reliability, and R0 is the minimum 
reliability requirement. 
 
To solve the problem, the following assumptions are made: 
 

•  The N nodes are perfectly reliable. A problem with a node 
may be simulated by the failure of its incident links. 

•  The cost cij  and the reliability pij of each link (i,j) are 
known. 

•  The links have two states: either operational (xij = 1) or 

failed (xij = 0). 
•  The links failures are independent. 
•  No repair is considered. 
•  Two-connectivity is required. 

 
3. PROPOSED A-TEAM 

 
The main algorithm consists of two kinds of processes, a 
Coordinator and the PGAs (Parallel Genetic Algorithms). 
There is only one coordinator, which is responsible of creating 
the PGA processes, collect their results and take note of the 
global statistics. The PGAs do the real work. Once the 
coordinator initializes all the processes, each PGA computes its 
solutions, broadcasts its partial results to the others, and 
receives what its peers have sent to it.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Asynchronous Team (A-Team) implementation. 

 
3.1. The Coordinator 
 

First, the coordinator spawns P slaves processes, where P 
depends on the number of available processors, and the relative 
performance between them. Work balance is required for an 
efficient implementation. There are several ways to balance the 

computational load using parallel genetic algorithms (PGA), as 
example, with different population size in each processor. For 
the present proposal, load balance is achieved by running a 
different number of similar processes, depending upon the 
relative performance of the processor. 
 
The second task of the coordinator is to gather partial results 
sent by the PGAs, to check if a received solution is better than 
the current one, and if this is the case, to replace it. Also, it is 
the coordinator responsibility to take the required global 
statistics. For instance, the global time is measured here. At the 
same time, the coordinator does the entire user interface work. 
 
Finally, the coordinator checks the finishing criteria. For the 
present implementation, it stops after being informed that all 
the PGAs have already satisfied a given finishing condition. 
 
 
    START 
    SPAWN P PGAs 
    stop_counter=0 
    DO WHILE( stop_condition < P ) 
    RECIVE candidate network Nr and flag  
     IF (Nr is better than Nbest ) Nbest = Nr  
    IF ( flag=STOP_CONDITION_REACHED) 
                              stop_counter = stop_counter+1 
    ENDIF  
    ENDDO 
     KILL P PGAs  
     END 

Pseudocode 1: Coordinator process. 

 
3.2.Genetic Algorithm  
 

The proposed GA is based on a previous work by Dengiz et al. 
[2] with the following main features: 
 
•  All the network solutions keep the two connectivity 

constraints; that is, there should be at least two links 
incident to each node. 

•  A specialized initialization is used to enhance the 
efficiency of the search.  

•  The crossover and mutation operations are specialized. 
They are local search operators based on set operations 
(union, intersection, and subtraction). 

•  A repair algorithm is utilized to keep the networks under 
the two-connectivity constraint. 

•  There are two different approaches to calculate network 
reliability. First, an upper bound of all the network 
candidates included in the population is efficiently 
calculated. Then, a computational expensive Monte Carlo 
simulation is used to get a real good approximation of the 
actual all-terminal reliability of the best candidates. That 
way, a trade off between computational effort and 
accuracy is achieved. 

 
Encoding 

 

In the present proposal, a network is encoded by a string of 
bits, where each bit represents the operability of a link. The 
position of the bit in the string matches the label of the link 
(see Figure 2). The coding is implemented at bit level, in this 
way, a network with up to 16 links can be saved as an integer 
of 16 bits, where the highest order bit is labeled 1, and the bit 
of lowest order is labeled 16. For Instance: the network of 
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Figure 2: The dotted solid lines show where the lines are up, 
and the dotted line are the failure ones. 

Figure 2 is encoded by (reading from left to right): 
0101100000000000. Thus, the former network is represented 
by the integer 214 +212 +211 =22528. 
 
In case of networks with more than 16 links, an array of integer 
is used instead. As example: if a network has 20 links, an array 
of two integers is used. The first integer represents the first 16 
links. The highest order bit of the second integer represents 
link 17, and so on. 
 
 
 
 
 
 
 
 
 

Parallel Implementation 
 

There are several ways to implement a GA in a parallel 
asynchronous environment. For the present work, identical 
processes, called PGAs (Parallel Genetic Algorithms) are 
assigned to different processors. Each PGA has its own 
population, randomly generated by each independent process. 
The population size is maintained constant in each PGA 
process, even though it may receive any number of network 
candidates from the peer processes. For that porpoise, a genetic 
selection operator is used after asynchronously receiving any 
number of candidates, to choose between the own population 
and the incoming candidates (see Pseudocode 2). That way, the 
interaction between processes is performed, interchanging good 
candidate networks. Every g generations, or when the PGA 
find a new best network, a PGA broadcast his best network to 
share it with its peers. If g is too large, there will be little 
interaction, but if it is too small, there may be large overhead 
with premature convergence.  

 
PGA genetic operators 

 

A PGA uses basically the same mutation and crossover 
operators presented in [23]. These are specialized operators to 
perform local search and preserve two-connectivity constraints 
using a repair algorithm. Both, mutation and crossover, use set 
operators: union, intersection and subtraction. These operators 
are efficiently implemented using bit operators (OR, AND, 
NOT). 
 
On the other hand, the proposed selection operator is not 
identical to the one presented in [23]. It has been extended to 
deal with variable-size population, as explained above. There 
are several PGA running in parallel, and interchanging partial 
results with their peers. So, when a PGA does a selection, it has 
to select a constant number of candidates, among the last 
population plus the recently arrived candidates, in order to 
preserve population size. 
 

The PGA objective function (OF) 
 

A penalization is used in the objective function to allow 
infeasible networks in the population, but preventing them to 
be chosen as the best one. This is done because two unfeasible 
networks can breed feasible solutions. A constant k has been 
introduced to the penalization function proposed in [23] to 
increase this restriction. Initial studies indicate that the 
objective function formulae can be further improved using a 
variable penalization, to get an adaptive penalization that 
would resemble a simulated annealing. For the present work, 
the first variation is preferred to maintain compatibility with 
Dengiz et al [23] results. 
 

(2) 

 {

constantak

cofvaluemaximumthec

RxRkcxcxZ

ijmax

RxRif
RxRif

maxijij

=

=

−+=

≥
<

��

0

0

0
10

2
0

)(,
)(,

)))((()(

δ

δ
 

 
 

PGA stop-criteria 
 

Each PGA runs independently of their peers, informing the 
coordinator when it reaches a stop-criteria. There are two 
finishing criteria: 

� convergence of the population to a homogenous 
population; 

� maximum number of generations. 
 

A PGA does not stop when its finishing criterion is satisfied, 
because it may receive new network candidates from its peers. 
It just informs the coordinator instead. The coordinator is the 
one in charge of testing general convergence and killing the 
PGA processes. 
 

At every generation, each member of the population is 
compared to the best candidate. If a given network has no more 
than l links that are not in the best, this network is considered 
similar to the best. When the average of similar networks is 
more than a given percentage, the population is considered 
homogenous.  
 

The PGA Algorithm 
 

A PGA process (see Pseudocode 2), has five main tasks: 
•  to generate the initial population. A specialized method is 

used to assure random and feasible network candidates; 
•  to receive candidate networks that have been transmitted 

by the peers, and to apply selection over the whole 
population (old population plus the arrived ones). If an 
imported candidate is better than the best local network, 
the later is replaced by the new arrived. That way, the 
penalization parameters are improved; 

•  to perform the regular GA operations (crossover and 
mutation); 

•  to broadcast the best network it finds. That way, a good 
candidate may be exported to other processes several 
times. If the network is the global best at this time, all the 
PGA will adopt it and export it, until a new best network 
appears. Each PGA transmits its best network every g 
generations or when a new best appears; 

•  to inform the coordinator when a given finishing criteria is 
satisfied. 

 



4. EXPERIMENTAL RESULTS 
 

The experimental experiences have been performed over a 10 
Mbps Ethernet network, with three personal computers with 
Intel 80486 processors of different configurations. The 
programs were written in C and the parallel implementation 
was done using PVM (Parallel Virtual Machine). The 
processes have been assigned regarding the relative 
performance to have a reasonable work balance. The sequential 
GA, used as reference, processes a population size P times 
larger than the one on the PGAs, where P is the number of 
spawned PGA processes. 
 

 
Pseudocode 2: Parallel Genetic Algorithm – PGA. 

For the present work, the reliability constraint is relaxed to 
allow performance comparisons between the sequential GA and 
the A-Team. As discussed before, the penalization function is 
not sufficient to prevent almost reliable networks from being 
chosen as the best solution, especially considering that Monte 
Carlo simulation only gives a good approximation of a given 
network reliability. Therefore, unfeasible solutions with low 
cost all-terminal reliability approximation that differs in no 
more than 2%, are accepted as good solutions.  
 
Figure 3 shows a typical running of the GA and the 
implemented A-Team, plotting the temporary best solution as a 
function of time. It can be seen that the A-Team converges 
much faster than the GA. In fact, the GA satisfies a finishing 

criterion (by population homogenization) more than 400 s 
before the GA finds a similar quality solution. 
 

Figure 3: Typical running showing a fast convergence  
of an A-Team. 

 
Table 1 presents results over 10 runs when designing a 10 
nodes network that may be fully interconnected, i.e. there are 
45 possible links. Each link has a reliability of 90% and an all-
terminal reliability requirement of 95%. The testing network 
design problem is extracted from a test-set provided in [23]. It 
can be noted that the A-TEAM not only gets good solutions, 
but also a more predictable running time when compared to 
sequential GA. 
 

 A-TEAM Sequential GA 

Run Best 
Cost 

Reliability Time 
[s] 

Best 
Cost 

Reliability Time 
[s] 

1 140 0.9412 339 147 0.9416 230 

2 143 0.9374 305 149 0.9470 719 

3 153 0.9458 158 140 0.9382 341 

4 139 0.9360 374 135 0.9323 983 

5 139 0.9375 192 140 0.9446 1480 

6 142 0.9444 155 142 0.9364 334 

7 142 0.9371 177 150 0.9381 640 

8 141 0.9464 294 142 0.9370 1755 

9 154 0.9467 351 139 0.9340 652 

10 140 0.9379 198 139 0.9388 669 

Average 143.3 0.94104 254.3 142.3 0.9388 780.3 
Standard 
Deviation 

5.54 0.0044 86.38 4.85 0.0043 497.55 

 

Table 1: Experimental results over 10 runs. 
Table 2 shows the average over three runs of a network design 
problem with 50 nodes fully interconnected. As can be seen, 
speedup scales very well indicating that the proposed A-Team 
can be used with advantage in the design of larger reliable 
networks. 
 

 Best Cost Reliability Time [s] 

GA 1536.5 0.8646 21481.5 

A-TEAM 1383.3 0.8285 9302.3 

Table 2: Average over 3 runs for a 50-nodes fully 
connected network design. 

 

START  
POPULATION pop[], pop_old[], imported[] 
pop_size=s   /*population size*/ 
gen=0   /*Generation number*/ 
exp_freq   /*Export every exp_freq 
generations*/    
GENERATE_NEW_POPULATION ( pop_old ) 
FOR (i=1 to s) 
       UPPER_BOUND(pop_old[i])  /*Reliability calculation*/ 
END FOR 
ORDER_POP_BY_OF(pop_old) /*By objective function*/ 
xbest = pop_old[1] 
MONTE_CARLO (pop_old[1]) 
DO WHILE( TRUE ) 
        IMPORT_NETWORKS /*From other processes*/ 
        FOR (i=1 TO pop_size/2) 

SELECT_TWO_NETWORKS  
 IF (RANDOM<crossover_rate)  
  GET_CHILDREN_BY_CROSSOVER  
 ELSE 

 CLONE_CHILDREN_FROM_PARENT
S 
 ENDIF 
 IF (STOP_CRITERIA) INFORM_COORDINATOR 
 IF (RANDOM< mutation_rate) MUTATE_CHILD1 
 IF (RANDOM< mutation_rate) MUTATE_CHILD2 
 INSERT_CHILDREN(pop) 
        END FOR 
        ORDER(pop) 
        i=1  
        DO WHILE (pop[i]) better than xbest AND i<pop_size) 
 MONTE CARLO (pop [i]) 
 IF (pop[i]) better than xbest) 
  pop[i]=xbest 

  EXPORT(Xbest) 
 END IF 
 i=i+1 
        END DO 
        IF (gen MOD exp_freq = 0) EXPORT(Xbest) 
        gen=gen+1 
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5. CONCLUSIONS AND FUTURE WORK 
 

The paper presented a network design problem subject to 
reliability constrain that is especially complex because not only 
the design itself is NP-hard, but also the exact reliability 
calculation. For this reason, several different methods have 
been published but none of them is efficient enough to solve 
network size of nowadays. 
 
The complexity of the design and the variety of completely 
different algorithms, each one with its own strength, make of 
this problem an ideal field for testing Asynchronous Team 
Algorithms, a technique to exploit available computer power of 
asynchronous distributed systems, as computer networks. The 
idea behind this proposal is to combine different algorithms, as 
the two implemented in the reliability calculation, to get the 
best of each one in what each is good for. In this context, it was 
proposed a parallel (-specialized) Genetic Algorithm for the 
design problem, while an upper bound calculation and Monte 
Carlo simulation were used for network reliability estimation. 
By combining all those algorithms in a network of available 
personal computers, good results are found, with considerable 
speedup that scales very well with the size of the problem. 
 
Considering that most modern organizations today have access 
to a good number of computers interconnected through a 
network, the presented technique gives an ideal approach to 
solve very large and complex problems as the design of reliable 
networks. Furthermore, using the same ideas with relatively 
little change in the presented implementation, the authors are 
studying a variety of similar design problems, as the following 
ones: 

� Maximize reliability of a network, given a maximum 
budget. 

� Design of reliable networks with different kind of 
links as: optical fiber, wireless communication, 
telephone lines, etc., (with or without redundancy). 

� Design of reliable networks with other constrains as: 
maximum number of hops between any two nodes, 
minimum total throughput, maximum delay, etc. 

 
There is work to do, but A-Teams promise to be a very good 
tool for treating large and complex problems in modern 
internetworked environments. 
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