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Abstract. This paper presents a new multiobjective multicast routing algorithm
(MMA) based on the Strength Pareto Evolutionary Algorithm (SPEA), which
simultaneously optimizes the cost of the tree, the maximum end-to-end delay,
the average delay and the maximum link utilization. In this way, a set of
optimal solutions, known as Pareto set, is calculated in only one run, without a
priori restrictions. Simulation results show that MMA is able to find Pareto
optimal solutions. They also show that for the constrained end-to-end delay
problem in which the traffic demands arrive one by one, MMA outperforms the
shortest path algorithm in maximum link utilization and total cost metrics.

1 Introduction

Multicast consists of concurrently data transmission from a source to a subset of all
possible destinations in a computer network [1]. In recent years, multicast routing
algorithms have become more important due the increased use of new point to
multipoint applications, such as radio and TV, on-demand video and teleconferences.
Such applications have an important quality-of-service (QoS) parameter, which is the
end-to-end delay along the individual paths from the source to each destination.

Another consideration in multicast routing is the cost of the tree. It is given by the
sum of the costs of its links. A particular case is given with unitary cost. In this case, a
multicast tree with minimum number of links is preferred, such that bandwidth
consumption is minimized. To improve the network resource utilization and to reduce
hot spots, it is also important for a multicast routing algorithm to be able to balance
traffic. In order to improve load balancing, minimization of the maximum link
utilization is proposed [2].

Most algorithms deal with two of these metrics: cost of the tree and the end-to-end
delay. They address the multicast routing as a mono-objective optimization problem,
minimizing the cost subjected to a maximum end-to-end delay restriction. In [3],
Kompella et al. present an algorithm (KPP) based on dynamic programming that
minimizes the cost of the tree with a bounded end-to-end delay to each destination.
For the same problem, Ravikumar et al. [4] present a method based on a simple
genetic algorithm. This work was improved in turn by Zhengying et al. [5] and Araujo
et al. [6]. The main disadvantage with this approach is the necessity of an a priory
upper bound for the end-to-end delay that may discard good solutions.



Lee et al. [2] present a multicast routing algorithm which finds a multicast tree
minimizing the maximum link utilization subject to a hop-count constrained.
 In contrast to the traditional mono-objective algorithms, a MultiObjective
Evolutionary Algorithm (MOEA) simultaneously optimizes several objective
functions; therefore, they can consider the maximum end-to-end delay, the average
delay, the cost of the tree and the maximum link utilization as simultaneous objective
functions. MOEAs provide a way to solve a multiobjective problem (MOP), finding a
whole set of Pareto solutions in only one run [7]. This paper presents a Multiobjective
Multicast Routing Algorithm (MMA), a new approach to solve the multicast routing
problem based on a MOEA with an external population of Pareto Optimal solutions,
called the Strength Pareto Evolutionary Algorithm (SPEA) [7].

The remainder of this paper is organized as follow. A general definition of a
multiobjective optimization problem is presented in Section 2. The problem
formulation and the objective functions are given in Section 3. The proposed
algorithm is explained in Section 4. Experimental results are shown in Section 5.
Finally, the conclusions are presented in Section 6.

2 Multiobjective Optimization Problem

A general Multiobjective Optimization Problem (MOP) includes a set of n decision
variables, k objective functions, and m restrictions. Objective functions and
restrictions are functions of decision variables. This can be expressed as:
Optimize      y = f(x) = (f1(x), f2(x), ..., fk(x))
Subject to   e(x) = (e1(x), e2(x), ... ,em(x)) ≥ 0
where x = (x1, x2, ..., xn) ∈  X is the decision vector, and y = (y1, y2, ... , yk) ∈  Y   is
the objective vector. X denotes the decision space while the objective space is
denoted by Y. The set of restrictions e(x) ≥ 0 determines the set of feasible solutions
Xf and its corresponding set of objective vectors Yf. The problem consists of finding x
that optimizes f(x). In general, there is no unique “best” solution but a set of solutions.
Thus, a new concept of optimality should be established for MOPs. Given two
decision vectors u, v∈X,

f(u)=f(v)   iff   ∈∀i {1,2,...,k}:  fi(u)=fi(v);
f(u) ≤ f(v)  iff   ∈∀i {1,2,...,k}: fi(u) ≤ fi(v);
f(u)<f(v)   iff   f(u) ≤ f(v) ∧ f(u) ≠ f(v) .

Then, they comply with one of three conditions: u dominates v iff f(u)<f(v); u and v
are non-comparable iff f(u) � f(v) ∧  f(v) � f(u); and v dominates u iff  f(v) < f(u).
u�v denotes that u dominates or is equal to v. A decision vector x∈ Xf is non-
dominated with respect to a set V ⊆  Xf iff:  x dominates v or they are non-
comparables, ∀ v∈ V. When x is non-dominated with respect to the whole set Xf, it is
called an optimal Pareto solution. The Pareto optimal set Xtrue may be defined as Xtrue
={x∈ Xf | x is non-dominated with respect to Xf}. The corresponding set of objective
vectors Ytrue=f(Xtrue) constitutes the Optimal Pareto Front.



3 Problem Formulation

A network is modeled as a direct graph ),( EVG = , where V is the set of nodes and E is
the set of links. Let ( ) Eji ∈, be the link from node i to node j. For each link (i,j), let
z(i,j), c(i,j), d(i,j) and t(i,j) be its capacity, cost per bps, delay and current traffic,
respectively. Let Vs ∈  denote a source, { }sVN −⊆ denote the set of destinations, and

+∈ Rφ  the traffic demand (in bps) of a current multicast request. Let T(s,N) represent
a multicast tree with s as source node and N as destination set. At the same time, let

( )nspT ,  denote a path that connects the source node s with a destination node Nn ∈ .
Clearly, ( )nspT ,  is a subset of T(s,N). The multicast routing problem may be stated as
a MOP that tries to find a multicast tree that minimizes:

1- Maximum Delay: ( )
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3- Maximum link utilization: ( )
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4- Average delay:       ( )
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Example 1.  Figure 1 shows the NSF network, with d(i,j) in ms, c(i,j), and t(i,j) in
Mbps. The capacity of the links is 1.5 Mbps. Suppose a traffic request arriving with
φ=0.2 Mbps, s=5, and N={0, 4, 8, 9, 13}. (b) shows the tree constructed with KPP [3],
subject to a maximum delay of 40 ms, (c) shows a tree would not be found by KPP or
other algorithms based on restrictions if a bound delay lower than 40 ms were a priori
established, even though it is a good option. If αΤ is the most important metric,
solution (d) would be the best alternative.
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Fig. 1. The NSF Net. d(i,j), c(i,j) and t(i,j) are shown over each (i,j) link. Different alternative
trees for the multicast request with s=5, N={0, 4, 9, 10, 13} and φ =0.2 Mbps



4      Proposed algorithm

The proposed algorithm holds an evolutionary population P and an external Pareto
solution set Pnd. Starting with a random population P, the individuals evolve to
optimal solutions, included in Pnd. The algorithm is shown in Figure 2(a).

-Read group and traffic demand
-Build  routing tables
do{
     -Discard
     -Evaluate
     -Update non-dominated set
     -Compute fitness
     -Selection
     -Crossover and mutation
}while stop criterion is not verified
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Fig. 2. (a) The proposed algorithm. (b) Relation between the chromosome, genes and routing
tables. The chromosome represents the tree shown in the same Figure

Build routing tables: Let { }||21 ,...,, NnnnN = . For each Nni ∈ , a routing table is built.
It consists of the R shortest, R cheapest and R least used paths, where the use of a path
is defined as the maximum link utilization along the path. R is a parameter of the
algorithm. Yen’s algorithm [10] was used for this task. A chromosome is represented
by a string of length |N| in which the element (gene) gi represents a path between
s and in . See Figure 2(b) to see the chromosome that represents the tree in the Figure.
Discard: In P, there may be duplicated chromosomes. Thus, duplicated chromosomes
are replaced by new randomly generated individuals [9].
Evaluate: The individuals of P are evaluated using the objective functions. Then,
non-dominated individuals of P are compared with the individuals in Pnd to update
the non-dominated set, removing from Pnd dominated individuals.
Compute fitness: Fitness is computed using the SPEA procedure [7].
Selection: A roulette selection operator [8] is applied over the set PPnd ∪  to generate
the next population P.
Crossover and mutation: In this work, the two-point crossover operator is applied
over each selected pair of individuals. Then, some genes in each chromosome of the
new population are changed (mutated) with probability Pmut [8].

5 Results

Simulation experiments were performed for Example 1. An exhaustive search method
was used to compare the results. The optimal Pareto set was found to have 16
solutions. The run time of the exhaustive search method was approximately 3 hours.
One hundred runs were done using MMA with |P| = 50, Pmut = 0.3, R = 25 and 500
generations. The minimum, maximum and average theoretical optimal solutions
found by the runs using MMA were 16, 10 and 12.72 respectively. The mean running
time was 270 ms and its maximum was 300 ms. Clearly MMA has a good
performance finding at least 62.5% of the Pareto Front.



MMA was also compared against the delay shortest path (SP). Two hundred
random requests of traffic demands of 0.1 Mbps were generated. The multicast group
was randomly selected with a size between 4 and 7. The duration of each traffic
demand was exponentially distributed (with an average of 120 s) and the inter-arrival
time randomly distributed between 0 and 30 minutes. The maximum end-to-end delay
for a group was set to 1.25 times the maximum end-to-end delay of the tree
constructed with SP. MMA was set to |P|=100, Pmut=0.3 and R = 30. The mean time
consumed to construct a multicast tree was 270 ms. Given that MMA may provide
several solutions, two different scenarios were simulated: firstly, the trees with
minimum αT subject to end-to-end delay restriction; secondly, trees with minimum C
satisfying the restriction. To compare performance, normalized values of maximum
link utilization, total cost, which is calculated as the sum of the tree costs of the
multicast groups already in the net, and the total delay, which is given by the sum of
the total delay of the multicast groups already in the net, were calculated. For
example, normalized total cost was given by  

MMAMMASPN CCCC /)( −= . Figure 3(a) shows
that MMA leads to better link utilizations than SP. Note that the maximum link
utilization using SP is sometimes 150 times greater than using MMA. Besides, from
Figure 3(b), it can be seen that at almost all time, SP total cost is more expensive than
MMA. As it was expected, the total delay using SP was lower than MMA, since SP
produces optimal trees. Figures 4(a) to 4(c) show normalized values for the second
scenario. Now the cost difference between SP and MMA has increased since the select
criterion of MMA is the cost. Note that at almost all time, SP total cost is at least 10%
more expensive than MMA. In contrast, α is even worse than with the first scenario.

6 Conclusion

This paper presents a new multiobjective multicast routing algorithm (MMA) to solve
the multicast routing problem. This new algorithm minimizes simultaneously four
objective functions: 1- maximum end-to-end delay, 2- cost of a tree, 3- maximum link
utilization and 4- average delay. MMA has a purely multiobjective approach, based on
SPEA. This approach calculates an optimal Pareto set of solutions in only one run,
without a priori restrictions, an importance feature of MMA.
Experimental results show that MMA was able to found Pareto optimal solutions.
They also show that α and the total cost of MMA were lower than those of the shortest
path algorithm. As future work, we will consider a traffic engineering scheme using
different distribution trees over larger problems.
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