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Abstract—This paper presents a new version of a multiobjective
multicast routing algorithm (MMA) for traffic engineering, based
on the Strength Pareto Evolutionary Algorithm (SPEA), which
simultaneously optimizes the maximum link utilization, the cost
of the tree, the maximum end-to-end delay and the average delay.
In this way, a set of optimal solutions, known as Pareto set, is
calculated in only one run, without a priori restrictions.
Simulation results show that MMA is able to find Pareto optimal
solutions. They also show that for dynamic multicast routing,
where the traffic requests arrive one after another, MMA
outperforms other known algorithms.

Keywords - computer networks; multicast routing; multiobjetive
optimization; evolutionary algorithms

 I.  INTRODUCTION

Multicast consists of simultaneous data transmission from a
source node to a subset of destination nodes in a computer
network [1]. Multicast routing algorithms have recently
received great attention due to the increased use of new point to
multipoint applications, such as radio and TV transmission, on-
demand video and teleconferences. Such applications generally
have some quality-of-service (QoS) parameters as maximum
end-to-end delay and minimum bandwidth resources.

When a dynamic multicast problem considers various
traffic requests, not only QoS parameters must be considered,
but also load balancing and network resources must be taken
into account. In order to avoid hot spots and to balance the
network load, the common approach is to minimize the
utilization of the most heavily used link in the network (α), or
maximum link utilization [2]. Although this approach is useful
to balance the load, it may waste network resources (i.e. sum of
assigned bandwidth at each link) [2]. Therefore, minimization
of the cost of the tree of each multicast group, which is given
by the sum of the cost of the used links, is also desired. It is
known that the complexity of computing the minimum cost
tree for a given multicast group is NP-hard [3]. So, this paper
improves a Multiobjective Multicast Routing Algorithm
(MMA) presented in [4], to find a multicast tree optimizing
several objective functions. In contrast to mono-objective
algorithms [2, 3, 5], MMA finds a set of optimal solutions by
minimizing simultaneously the maximum link utilization, the
cost of the tree, the maximum end-to-end delay and the average

delay. In this way, a whole set of Pareto solutions can be
obtained in only one run [6].

The remainder of this paper is organized as follows. Section
II describes related works. A general definition of a
multiobjective problem is presented in Section III. The
problem formulation and the objective functions are given in
Section IV. The proposed algorithm is explained in Section V.
Experimental environments are given in Section VI, and the
results are shown in Section VII. Finally, conclusions and
future works are presented in Section VIII.

 II. RELATED WORK

The first reference of the problem of finding the lowest cost
tree subject to an end-to-end delay in a multicast context were
presented by Kompella et al. [7], who proposed an algorithm
based on dynamic programming (KPP). For the same problem,
Ravikumar et al. [1] presented a method based on a simple
genetic algorithm. This work was improved in turn by
Zhengying et al. [8] and Barbosa et al. [5]. The main
disadvantage of this approach is the necessity of an a priory
upper bound for the end-to-end delay that may discard
solutions of low cost or low α (or both) with a delay only
slightly larger than an a priori predefined upper bound.

In [2], Seok et al. proposed bifurcation and non-bifurcation
schemes minimizing α to transport multicast flows with hop-
count constrained. Given that schemes are NP-hard, they also
proposed a heuristic algorithm consisting of two parts: 1-
modifying the original graph to a hop-count constrained
version; 2- finding a tree to minimize α.

In [3], Donoso et al. proposed a multi-tree traffic
engineering scheme using multiple trees for each multicast
group. They took into account four metrics: α, hop count,
bandwidth consumption and total end-to-end delay. The
method minimizes a weighted sum function composed of the
above four metrics. Considering the scheme is NP-hard, the
authors proposed a heuristic algorithm consisting of two steps:
1- obtaining a modified graph: all possible paths between the
source node and every destination node are looked for. Then,
for each destination, for each path of the destination, for each
node of the path, a distance value based on hop count,
bandwidth consumption and delay is computed; 2- in the
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modified graph, finding out the trees based on the distance
values and the available capacity of the paths.

 III. MULTIOBJECTIVE OPTIMIZATION PROBLEMS

A general Multiobjective Optimization Problem (MOP)
includes a set of n decision variables, k objective functions, and
m restrictions. Objective functions and restrictions are
functions of decision variables. This can be expressed as:

Optimize      y = f(x) = (f1(x), f2(x), ... , fk(x)).
Subject to   e(x) = (e1(x), e2(x), ... ,em(x)) ≥ 0,
where x = (x1, x2, ..., xn) ∈  X is the decision vector, and
y=(y1,y2, ... , yk)∈ Y   is the objective vector.

X denotes the decision space while the objective space is
denoted by Y. Depending on the problem at hand, “optimize”
could mean minimize or maximize. The set of restrictions
e(x)≥0 determines the set of feasible solutions Xf and its
corresponding set of objective vectors Yf. The problem
consists of finding x that optimizes f(x). In general, there is no
unique “best” solution but a set of solutions, none of which
can be considered better than the others when all objectives
are considered at the same time. This derives from the fact that
there can be conflicting objectives. Thus, a new concept of
optimality should be established for MOPs. Given two
decision vectors u, v ∈ X:
f(u ) = f(v)   iff   ∈∀i {1,2,...,k}:  fi(u) =  fi(v)
f(u) ≤  f(v)   iff   ∈∀i {1,2,...,k}: fi(u) ≤  fi(v)
f(u) <  f(v)   iff     f(u) ≤  f(v) ∧  f(u) ≠  f(v)

Then, in a minimization context, they comply with one of
three conditions:
u • v  (u dominates v),  iff   f(u)<f(v)
v • u  (v dominates u),     iff   f(v)<f(u)
u ~ v  (u and v are non-comparable),iff  f(u)•f(v) ∧  f(v)•f(u)

Alternatively, for the rest of this work, u> v will denote
that u dominates or is equal to v.

A decision vector x∈ Xf is non-dominated with respect to a
set V ⊆  Xf iff:  x • v or   x ~v, ∀ v∈ V. When x is non-
dominated with respect to the whole set Xf, it is called an
optimal Pareto solution; therefore, the Pareto optimal set Xtrue
may be formally defined:
Xtrue ={x∈ Xf | x is non-dominated with respect to Xf}. The
corresponding set of objective vectors Ytrue=f(Xtrue) constitutes
the Optimal Pareto Front.

 IV. PROBLEM FORMULATION

For this work, a network is modeled as a direct graph
G=(V, E), where V is the set of nodes and E is the set of links.
Let (i,j)∈E be the link from node i to node j. For each link
(i,j), let zij, cij, dij and tij be its capacity, cost per bps, delay and
current traffic, respectively. Let s∈V denote a source,
N⊆V_{s} denote the set of destinations, and φ∈•+ the traffic
demand (in bps) of a current multicast request. Let T(s,N)
represent a multicast tree with s as source node and N as
destination set. At the same time, let pT(s,n) denote a path that

connects the source node s with a destination node Nn ∈ .
Clearly, pT(s,n) is a subset of T(s,N). Finally, let d(pT(s,n))
represent the delay of the path pT(s,n), given by the sum of the
link delays that conform the path, i.e.:
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Using the above definitions, a multicast routing problem
for traffic engineering may be stated as a MOP that tries to
find the multicast tree T(s,N) minimizing the following
objectives simultaneously:
1- Maximum link utilization of the tree:
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2- Cost of the tree:
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3- Maximum end-to-end delay:
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4- Average delay:
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where |N| denotes N’s cardinality. The problem is subject to
the link capacity constraint:

ijij zt ≤+φ ,   ( ) Tji ∈∀ , .                         (6)

A simple example follows to clarify the notations.
Example 1. Given the network topology in Fig. 1[4], the

numbers over each link (i,j) denote dij in ms, cij, and tij (in
Mbps) at the current time. For each link, zij=1.5 Mbps.
Suppose a traffic request arriving with φ=0.2 Mbps, s=5, and
N={0, 4, 8, 9, 13}. Fig. 1(a) shows the tree constructed with
KPP [7], subject to a maximum delay of 40 ms. KPP
minimizes C subject to a bound delay. Fig. 5(b) and (c) show
two alternatives that would not be found by KPP nor by other
algorithms based on restrictions if a bound delay lower than
40 ms were a priori established. These alternatives may be
good options since they have a bound delay only slightly
larger than the predefined bound. Selecting solution (c), C
would be minimized, while selecting (b), C would be only a
little larger than (c) but the average delay would be lower. If
αΤ is the most important metric, solution (d) would be the best
alternative.

It is important to note from the mathematical formulation
that the four objective functions are treated independently and
should be minimized simultaneously, i.e. they are not
combined to form a scalar single-objective through a linear
combination (as weighted sum), nor any of them is treated as a
restriction. This way, using the concept of Pareto dominance, a
whole set of optimal solution is provided in one run.
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(a) KPP. αT = 0.73, C = 7.2, DM = 36, DA = 23.8
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(b) αT = 0.6, C = 6.4, DM = 40, DA = 23
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(c) αT = 0.6, C = 6.2, DM = 40, DA = 27.2
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(d) αT = 0.53, C = 10.6, DM = 38, DA = 26.8

Figure 1.  The NSF Net. dij, cij and tij are shown over each link. (a) to (d)
show different alternative trees for  the multicast request with s = 5, N  = {0,
4, 9, 10, 13} and φ =0.2 Mbps.

 V. PROPOSED ALGORITHM

Following the SPEA scheme [6] and using the framework
provided by it, the proposed algorithm holds an evolutionary
population P and an external Pareto solution set Pnd. Starting
with a random population, the individuals evolve to optimal
solutions, and these solutions are included in an external

optimal Pareto set. Fig. 2 shows an outline of the proposed
algorithm. Each procedure is briefly explained.

-Read multicast group and traffic demand
-Build  routing tables
-Initialize P and Pnd
do{
     -Discard identical individuals
     -Evaluate individuals of  P
     -Update non-dominated set Pnd
     -Compute fitness
     -Selection
     -Apply crossover and mutation
}while stop criterion is not verified

Figure 2.  Proposed algorithm.

Build routing tables. Let N={n1, n2, …, n|N|}. For each ni∈N, a
routing table is built. It consists of the R shortest, R cheapest
and R least used paths, where the use of a path is defined as
the maximum link utilization along the path. R is a parameter
of the algorithm. Yen’s algorithm [9] was used for this task. A
chromosome is represented by a string of length |N| in which
the element (gene) gi∈Z+ in (1,3R), represents a path between
s and ni. The relation between a chromosome, genes and
routing tables is shown in Fig. 3 (b). Chromosome in (b)
represents the tree in (a) [4]. In this network, dij is shown for
each (i,j), and the routing tables only lists the five shortest
delay path with their delay along the path (dp).
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Figure 3.  (a) A network with dij over the links. (b) Relation between the
chromosome, genes and routing tables.

Initialize P and Pnd. This procedure generates |P|
chromosomes, where P is the evolutionary population. An
external global non-dominated Pareto set will be denoted as
Pnd. At beginning, it includes the non-dominated individuals
of the initial P.

 Discard identical individuals of P. Applying operations like
crossover on two identical chromosomes will yield the same
chromosome and the searching ability may be reduced. To



avoid this, a duplicated chromosome is replaced by a new
randomly generated [4].

Evaluate individuals of P. For each Pi ∈ , the objective vector
composed of the four objective functions defined is calculated.

Update non-dominated set Pnd. Each non-dominated
individuals of P is compared with the individuals in Pnd. If that
in P is not dominated by anyone of Pnd, then it is copied to Pnd.
Besides, if an individual in Pnd is dominated by someone in P,
it is removed from the external set.
Compute fitness. The procedure is a two-step process: 1- for
each i∈Pnd a strength qi∈[0, 1) is computed, which is
proportional to the number of population members j∈P for
which ji > :

        1| −⋅∧∈= PjiPjjqi > ;          (7)

2- for each j∈P the strength qj∈[1, |P|] is computed by
summing the strength of all individuals i∈Pnd for which i•j
plus one:

∑
∈

+=
jiPi
ij

nd

qq
>,

1 .          (8)

Finally, the fitness may be calculated as the inverse of the
strength; however, it is not really needed with the binary
tournament selection chosen for this new approach.
Selection. The selection operator is applied on each generation
over the set P ∪ Pnd, to generate a new population P for the
next generation. In this improved MMA version, binary
tournament [10] has been implemented as selection operator.
Two individuals from P are randomly selected (with
replacement) and the one with the lower strength wins the
tournament and is selected for the next generation.

Apply crossover and mutation operators. The two-point
crossover operator is applied over each selected pair of
individuals. Then, some genes in each chromosome of the new
population are changed (mutated) with probability Pmut [10].

 VI. EXPERIMENTAL ENVIRONMENT

MMA has been implemented on a 1.25 GHz AMD Athlon
computer with a 256 MB of RAM. The compiler used was
Borland C++ V 5.02. In order to evaluate MMA, two test
problems were used.

A. Test Problem 1
The first test problem consisted of the Example 1. One

hundred runs of MMA were done. The parameters were
|P|=40, R=25 and Pmut=0.3. The runs stopped after 500
generations. To validate the results, an exhaustive search
method which finds all optimal Pareto solutions was used. The
optimal Pareto set was composed of 16 solutions presented in
Table I. Table II shows the corresponding objective vectors.

B. Test Problem 2
Fig. 4 represents the NTT network [11] with dij in ms over

each link (i,j). It consists of 55 nodes and 144 links. It is
assumed that zij=6 Mbps and cij=1, ∀(i,j)∈E. From (3), it can

be noted that C gives the total bandwidth consumption when
cij=1. Under these conditions, 400 random traffic requests
were generated, simulating a dynamic situation in which
traffic requests arrive one after another. Each group was
randomly selected with a size between 3 and 20. The duration
of each request was exponentially distributed (with an average

TABLE I.  OPTIMAL PARETO SET OF  EXAMPLE 1

Tree
S1 (5,4),(4,2),(2,0),(4,10),(5,6),(6,9),(9,13)
S2 (5,4),(4,10),(10,12),(12,13),(4,2),(2,0),(5,6),(6,9)
S3 (5,4),(4,2),(2,0),(4,10),(10,11),(11,9),(10,12),(12,13)
S4 (5,4),(4,10),(10,12),(12,13),(10,3),(3,0),(6,9)
S5 (5,4),(4,10),(5,6),(6,1),(1,0),(6,9),(9,13)
S6 (5,4),(4,10),(5,6),(6,1),(1,0),(6,9),(9,8),(8,12),(12,13)
S7 (5,4),(4,10),(10,12),(12,13),(5,6),(6,9),(6,1),(1,0)
S8 (5,4),(4,10),(10,11),(11,9),(4,2),(2,7),(7,13),(5,6),(6,1),(1,0)
S9 (5,4),(4,10),(10,3),(3,0),(10,11),(11,9),(4,2),(2,7),(7,13)
S10 (5,4),(4,10),(10,3),(3,0),(5,6),(6,9),(9,8),(8,12),(12,13)
S11 (5,4),(4,10),(10,3),(3,0),(5,6),(6,9),(9,13)
S12 (5,4),(4,10),(10,3),(3,0),(10,11),(11,9),(10,12),(12,13)
S13 (5,4),(4,10),(10,3),(3,0),(10,11),(11,9),(9,8),(8,12),(12,13)
S14 (5,4),(4,10),(10,3),(3,0),(10,12),(12,13),(13,9)
S15 (5,4),(4,2),(2,0),(0,3),(3,10),(10,11),(11,9),(10,12),(12,13)
S16 (5,4),(4,2),(2,0),(0,3),(3,10),(10,12),(12,13),(13,9)

TABLE II.  OBJECTIVE VECTORS (αΤ,C,DM,DA)
S1 0.73,8,23,16.8 S2 0.73,7,36,19.6
S3 0.73,6.8,36,23.8 S4 0.6,6.4,40,23
S5 0.66,8.4,36,19.4 S6 0.6,9.4,36,21
S7 0.6,7.4,36,22.2 S8 0.53,10.6,38,26.8
S9 0.53,9.4,40,27.6 S10 0.6,8.4,40,21.8
S11 0.66,7.4,40,20.2 S12 0.6,6.2,40,27.2
S13 0.53,8.2,51,30.2 S14 0.66,6,44,29
S15 0.73,5.8,63,40 S16 0.73,5.6,71,41.8

of sixty seconds) and the inter-arrival time randomly
distributed between zero and thirty minutes. All traffic
demands were set to φ=600 Kbps.

Figure 4.  NTT Network.

The parameters of MMA were set to |P|=40, R=30 and
Pmut=0.3. Given that MMA provides several solutions, the one
with minimum αΤ was finally selected. When there were two
or more trees with the same best value for αΤ, the one with
minimum cost was chosen. For this problem, MMA was
compared against the algorithm proposed by Seok et al. [2]
(SLCK algorithm), a novel heuristic that solves the dynamic
multicast routing problem minimizing αΤ, and against the
simple shortest path delay tree algorithm (SPT). The following
performance figures were used:



1- Normalized maximum link utilization:
αN = (αW – αMMA)/αMMA.          (9)

2- Normalized total bandwidth consumption:
BN = (BW – BMMA)/BMMA.        (10)

3- Normalized total delay:
DN = (DW – DMMA)/ DMMA,        (11)

where
W: SPT or SLCK, depending on which is compared.
αW: maximum link utilization using W.
αMMA: maximum link utilization using MMA.
BW: total bandwidth consumption using W.
BMMA: total bandwidth consumption using MMA.
DW: total delay using W, given by the sum of the total delay

of the multicast groups already in the net. The total
delay of a group is the sum of the end-to-end delays to
the destination nodes.

DMMA : total delay using MMA.
If the average link utilization is defined as:
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Then, for the particular case in which the capacity of the
links are identical, (10) also gives the normalized value of α .
Besides the above performance figures, the following
dominance metrics were taken into account:

UMMA: Number of trees constructed with MMA that 
dominates the corresponding SLCK’ trees.

USLCK: Number of trees constructed with SLCK that 
dominates the corresponding MMA’ trees.

I: Number of indifference relationships. This occurs
when the trees constructed by MMA and SLCK are
non-comparables.

SLCK was set up with three values of H, an a priori
parameter of this algorithm [2]. The parameters of MMA
given for the two problems were chosen for experience.

 VII. RESULTS

A. Test Problem 1
The minimum, maximum and average theoretical optimal

solutions found by the runs using MMA were 12, 16 and 13.54
respectively. The mean time consumed to build a tree was 80
ms. Clearly MMA has a good performance finding the Pareto
Set, given that it finds at least 75% of the Pareto Front. In this
way, MMA not only finds an optimal solution, but also a set
of Pareto solutions. This feature is a very special
characteristic, since the most adequate solution can be chosen
for each particular case without a priori restrictions.

B. Test Problem 2
All the requests were accepted using MMA and SLCK,

while seven were rejected for lack of link capacity when SPT
was used. The mean time consumed to construct a multicast
tree by MMA was 120 ms. Table III shows the values of

UMMA, USLCK and I. Note that, even in the best case of SLCK
(H=3), 276 trees constructed by it were beaten by those of
MMA. This means that MMA´s trees were clearly better than
SLCK´s trees in almost 70% of the total requests (276 of 400),
since they won in at least one objective without being beaten
in anyone. Table III also shows that MMA and SLCK
constructed non-comparables trees in some cases.

TABLE III.  COMPARISON BETWEEN MMA AND SLCK
UMMA USLCK I

H=3 276 19 105
H=6 338 9 53
H=9 364 3 33

From Table III, the fact that MMA constructed better trees
than SLCK should lead to a better load balancing and
bandwidth consumption. Figs. 5(a) and (b) confirm this. Fig.
5(a) shows that maximum link utilization of the network when
SLCK was used  reaches values of almost 60% greater than
those of MMA in some times, while in others oscillates
between values  of -20 and 40% greater. Fig. 5(b) shows that
SLCK approximately uses between 20 and 60 % more
bandwidth resources than MMA. This also means that load
over the network is better balanced when MMA is used, since
BN gives α  so. Similarly, (c) shows that total delay is also
lower when MMA is used. These mean that MMA not only
balances the load better than SLCK, but also in addition is
able to consume less bandwidth resources and to produces
lower delay trees at the same time.

 Using SPT, seven traffic requests were turned down.
Figures 5 (d) to (f) are the normalized values for SPT. Fig 5(d)
shows that SPT has a poor performance respect to MMA when
α is considered. SPT was also clearly beaten in bandwidth
consumption. As expected, Fig. 5(f) shows that using SPT the
total delay was minimized.

 VIII. CONCLUSIONS

This paper presents an improved approach of MMA to
solve the multicast routing problem. MMA is able to optimize
four objective functions simultaneously: 1- maximum link
utilization, 2- cost of a tree, 3- maximum end-to-end delay and
4- average delay. MMA has a purely multiobjective approach,
based on SPEA. This approach calculates not only one
solution, but also an optimal Pareto set of solutions in only
one run. This last feature is especially important, since the
most adequate solution can be chosen for each particular case
without a priori restrictions. Experimental results showed that
MMA was able to find Pareto optimal solutions. They also
showed that for the dynamic multicast routing problem, MMA
produced better solutions than SLCK in almost 70% of the
traffic request (with H=3), leading to a better load balancing
over the network and consuming less bandwidth resources. At
the same time, the trees of MMA had lower average delay
than those of SLCK. The simulations also show that, when
compared against SPT, MMA was able to balance the load far
better and to consume less bandwidth resource.

In the future, the authors will consider a traffic
engineering scheme using different distribution trees. At the



same time, more tests over other network topologies will be
performed.
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Figure 5.  (a), (b) y (c): Normalized values of SLCK with H = 3. (d), (e) y (f): Normalized values of SPT.


