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ABSTRACT
This paper proposes an approach to fuzzy clustehagameliorates the data sample considered fstaring in the
sense that it first removes some few atypical gp#desns that are not relevant to the whole setlagyo but that may
severely interfere, specially when trying to findt othe optimal number of clusters in the set. &, the approach
consists of successive employment of a fuzzy edgriea relation-based hierarchical clustering metloodhe purpose
of pruning the sample from spurious data, follolda c-means clustering method based on an obgefivction
optimization. The latter method is applied to dge¢ tobjective function performance for several pbddecluster
numbers. By analyzing the objective function bebaaind by some other consideration regarding theyfequivalence
relation-induced partition spectrum on the data@at can achieve the optimal cluster quantity.
Keywords: fcm, hierarchical clustering, patternaguition, pruning, parallel processing.

1 INTRODUCTION

The objective of cluster analysis is to group adaibjects into clusters such that items withia #ame cluster have a
high degree of similarity, while objects belongitgdifferent clusters have a high degree of didsirity. Associated
with clustering problem, there is the specificatafrt, the most appropriate number of cluster¥,he set oh data to
be grouped which represent the studied objecig][5,

Cluster analysis is intrinsically related to patteecognition in data structure. There are threeléimental problems in
pattern recognition. The first one is concernedhiie representation of input data obtained by oreasents on objects
that are to be recognized: teensing problemin general, each object is represented by a veftmeasured values ef
variablesx =[xy, X, ..., %] this vector is usually called @attern vector The second problem concerns the extraction of
characteristic features from the input data in seohwhich the dimensionality of pattern vectgrean be reduced: the
feature extraction problemValid features must characterize attributes byctvithe given pattern classes are well
discriminated. The third problem involves the det@ation of optimal decision procedures to clasgifyen patterns,
this is usually done by defining an appropriateuisination function that assigns a real numbegadoh pattern vector;
the pattern vector is then classified into thelabose discrimination function yields the largestie [8].

In classical cluster analysis, clusters are builtiadc class centers, each defining the relevant claesésthese classes
are required to form partition of X. However, this requirement is to strong in maractical applications, and it is thus
desirable to replace it with a weaker requirem@nif8hen the crisp partition requirement is replagégth a weaker
requirement of a fuzzgseudopartitiorof X, one enters the problem aredwfzy clusteringFuzzy pseudopartitions are
often calledfuzzy c-partition

Fuzzy clustering can be approached by two basidoast hierarchical and non-hierarchical methodspragmthe
hierarchical ones there is tlfigzzy equivalence relation-based hierarchical @tisiy method The underlying idea in
non-hierarchical methods consists in choosing somtial fuzzy c-partition by assigning membership values to data,
relating to thec classes and then alter these values in a wayténobetter partitions of according to some predefined
appropriate objective function.



Although the analyst is the irreplaceable respdeditr getting a valid clustering, almost each lisnethod are relying
on computers to process enormous quantity of redll@m data. In this sense, either method haswits assets and
weaknesses. Hierarchical methods do not requidefirgtion ofc, but some of the drawbacks using them are retated
memory size and per iteration complexity of updative membership matrix [5], in fact, note thatdhapartition space
M is finite but quite large for all but trivial vads ofc andn [2]:

Ml = @ ){il(‘,?k—l)‘*i j”} o)
J:

is the number of distinct ways to partitiofiinto ¢ nonempty subsets. Besides, fuzzy equivalenceiagetabsed
hierarchical method suits better to sets with cls&incture, linking data according to nearest-naigin distance. On the
other side, fuzzy partition methods based on objedtinction fuzzy c-meandend to associate data according to their
proximity to class centers, this may be desirakiedmly works well with hyperspherical, roughly edjyroportioned
and well separated clusters; and neéal be predefined, apart from finding a suitablethe objective function [2].

In a way, the present work combines both approadiesdes, it employs parallel processing, in otdegprofit from

each method goodness for getting an optimal fuzagtering without having to pay a high price forintterms of
memory size and computing time. The following smudi briefly present the fuzzy equivalence relabased
hierarchical method, the fuzzy c-means method &edproposal of a combined use of them. Then thelcymp

algorithms are described; both: the sequentialthacparallel versions, the results are shown aallfithe conclusions
are presented.

2 FUZZY EQUIVALENCE RELATION-BASED HIERARCHICAL CLU STERING.

A relationR(X, X is reflexiveif and only if

ri =1, I<i<n (2)
wherer represents the relation definedXit is symmetriaf and only if
i = Tji, 1Si¢an (3)
and , if the relation is fuzzy, it imax-min transitivef and only if
Mk 2 ma){mlr[r” , rjk]} Drik 0OR (4)
Oj0On

A fuzzy relation that is reflexive according to (8ymmetric according to (3) and transitive acaogdio (4), is known
as afuzzy equivalence relatiayr similarity relation[8,9].

In a fuzzy setA, their elements generally have membership levelshe real interval [0, 1], zero meaning nhon
membership; one, absolute membership, and inteateedialues, partial membership. There is a wayesfringing
membership level that is particularly importantisithe restriction of membership degrees thagesater than or equal
to some chosen valug in [0, 1]. When this restriction is applied to ufy setA, one obtain a crisp subs& of X

which is called amr-cutof A. Formally [9], “A = {x O X | A(X) = a} for anya O [0, 1], whereA(x) denotes
the membership degreexfn A.

Fuzzy relations are also fuzzy sets, and as siny, have all general properties defined in fuzzly teeory. An
operation defined on binary fuzzy relations (binbegause it relates elements from two sets) thas tio be particularly
pertinent to this work is thmax-min compositiothat is following defined. LeP(X,Y) andQ(Y,2) be two binary fuzzy
relations with set in common, thestandard compositioor max.min compositioof these two relations, denoted by
P(X,Y) °Q(Y,2), produces a binary relatid?(X,,2) on the cartesian produ¥tx Z defined by

R(x, 2) = (P> Q)(x 2) = rynDa:;(min(P(x, ¥). Q(Y. 2)) ®)

In this context, each fuzzy equivalence relatioduites a crisp partition in each of iscuts. So, fuzzy clustering
problem can be envisaged as the problem of idemjfgan appropriate fuzzy equivalence relation am ¢bnsidered
data. Although this cannot usually be done diredtls possible to readily determine a fuzzy cotiiplity relation (that
is, a relation that is only reflexive and symmetkiat not transitive) in terms of an appropriatstaiice function applied
to given data. Then, a meaningful fuzzy equivalerstation is defined as theansitive closureof this compatibility
relation (the relation that is transitive, contaRfX, Y), and has the fewest possible members).

Given a set of datA (n s-tuples of1°), let a fuzzy compatibility relatior, onX be defined in terms of an appropriate
distance function of the Minkowski class by thenfioita



ik = R(Xj, xg) =1~ 5(_Zslll Xijj = X |q)% (6)
J:

for all pairs «;, x> 0O X, whereq O 0%, andd is the inverse value of the largest distanc¥,ia constant that ensures
thatR(x;, x,) O [0, 1].

In generalR defined by (6) is a fuzzy compatibility relatidmjt not necessarily a fuzzy equivalence relatioend¢, it
is usually required to determine the transitivesale ofR. This can be done by a simple algorithm basedhen t
following theorem [8]:

THEOREM 1 TRANSITIVE CLOSURE.
Let R be a fuzzy compatibility relation on a finite uaigal seX with [X| =n. Then, the max-min transitive closurefRf
is the relatiorR™?,

ALGORITHM 1 TRANSITIVE CLOSURE
Calculate the sequence of relations

k k-1 k-1
R@ = R°R, RW = R@°RA . R@) = R@ DoR ") @)
until no new relation is produced df2 n-1. End.

3 FUZZY CLUSTERING BASED ON OBJECTIVE FUNCTION (FCM )

Let X = {Xyq, X2, ..., Xn} be a set of given data. A fuzzy pseudopartitionfuezy c-partition of X is a family of fuzzy
subsets oK, [0 ={Ay, A, ..Ad, which satisfies

SA() =L lsksn ®

and

IN

0< En;A(xk)<n, l1<ic<ec. (9)
k=1

The problem of fuzzy clustering is to find a fuzpgeudopartition and the associated cluster cebterahich the
structure of the data is represented as best asbpmosThis requires some criterion expressinggereral idea that
associations be strong within clusters and weakvden clusters. To solve the problem of fuzzy chustg it is
necessary to formulate this criterion in terms pegormance indexGiven a pseudopartitidd , thec cluster centery
={vy, vy, ...V} associated with the partition are calculated ey formula

> A Xy
vi =KL 1<is<n (10)

> Al
k=1

where m>1 is a real number that governs the inflaesf membership grades|2, 8].
The performance index of a fuzzy pseudopartifion,(0 ,V), is then defined in terms of the cluster cenlsrs

In0.V) = £ SIAGIM I X - v, 1P, 1)

where || . || is some inner product-induced norspacel® and |x.-v; |f represents the distance betwegry v;. This
objective function measures the weighted sum dadtes between cluster centers and elements iootihesponding
fuzzy clusters. In this work, || . || represents Euiclidean distance in all cases. Clearly, thdlemthe value ofl,, the
better the fuzzy pseudopartitian . Therefore, the goal of the fuzzymeans clustering method is to find a fuzzy
pseudopartitiorl] that minimizesJ,,. The usual algorithm for this method was developgdBezdek [1981] which is
described below [2, 8]. The algorithm is basedt@dssumption that the desired number of clust&given and, in
addition, a particular distance, a real numipgl(1, ), and a small positive humber serving as a stopping criterion,
are chosen.

ALGORITHM 2.FCM.
Step 1.Lett = 0. Select values fa m, & norm || . || and an initial fuzzypartition 0 © that satisfies (8)-(9).
Step 2.Calculate the sat® of thec cluster centers with (10) fat © and the chosen value wf



Step 3.Update ¥ by the following procedure: For eaghe X, if || x-vi |F > 0,01, 1<i < c, then define
-1
1

t 2 -1
I = v® 2™

A (x) = | 3 (12)

: t 2
= 1 xe = v

if || x-vi |E = 0 for somaOIO N, Ne = {1, 2, ..c}, then define A,-“l(xk) Oi O 1 by any nonnegative real
number satisfying

> AP () = 1, (13)
il
and defineA"*Y (x,) = 0 0i O Ng - | (14)
Step 4.Compared] © with O ®9, 1f |0 ®Y - 0 Y < ¢, then stop; otherwise, increase t by one angtmeb
Step 2 End.
In this work, distancer] “*? - 0 9| in step 4 is taken as
0D —g® = max D ) = AL (x 15
| | iDNc’kDNNlﬁ (xXK) = AV (k) | (15)

In algorithm 2,m is chosen according to the case; winen 1, the process converges to a “generalized” claksic
means. Whem- oo, all cluster centers tend towards the whole dataenter of gravity. That is, the partition beceme
fuzzier with increasingn.

If m=1, and a crisp partition of is chosen so that, instead of (8)-(9),

A =X (16)
AnA=0, 1<izs<c (17)
OOAOX, 1<i<c (18)

then methoduzzy c-meansr fcmbecomes the classidadrd c-mean®r hcmand it is required to redefine (12)-(14) as

O = minga®
Ay = {0 O = R0 (19)

0, otherwise

wheredy, =|| X, — X; || So modified, algorithm 2, becomes Duda and Hamt klgorithm [2], in fact, it precedes the

fcm algorithm, which is a kind of generalisationhaim. If in (19) it happens to be two or more minimdistances, then
such singularity can be solved by assigniptp the first closest center.

4 PROPOSED CRITERION TO CLASS DEPURATION

Most practical applications of cluster analysis bame several techniques to overcome problems amy mathod
presents. Neither mathematics or the art of inmeijudgement produce alone what is readily achievalth their
combination [10]. According to appointments madseation 1, fuzzy equivalence relation-based hitiaal clustering
method could complement to fuzzymeans method, since it lends itself to deal widltadthat have pseudolinear
structure, while the latter turns out to be appiedpr for clustering data with structure of hypeesital, equal
proportioned and well separated clusters.

As to ¢ value while fcm method needs it to be predefined, the fuzzy edprivs-based hierarchical method is able to
find all partitions induced by the, calculated with (6), which are elements of maRijy, which represents the studied
relation. This equivalence levels, determine naturad-cuts for those partitions such that each of thetmniically
define a particular value af the number of classes at that relation level.nThmfortunatelly, in real problems, it is
rather hard to find chain topologies where the yueguivalence-based hierarchical method work, aanéntion the
disturbance often introduced by some atypical arisps data that could damage severely the clusjegsult.

This work proposes an approach to finding the ogitoby a successive employment of the fuzzy equivaeatation-
based hierarchical clustering method for the pupafspruning the sample from spurious data, folldyg a c-means
clustering method based on an objective functidimopation. With the first method it is possibledetect data that are



so isolated from the rest forming alone their olass (simpletons) or sharing the class with otber data, even at low
a-cuts. When applying the pruning criterion to remtivese spurious data from 3€tit is required to define a threshold
valueT such than = T, wheren is the number of elements of a significant classtlie clustering effect. The idea that
lies under pruningX from “noise data” is to stress the cluster linfiysslightly increasing the intercluster distanchug,
the remaining set after the pruning process waleahpvould increase its probably to show the dmkicharacteristics
that might favour a valid c-means clustering of it.

In this work, theT value is chosen together with the selection ofuavalue that limits the acceptable membership
degree inside a cluster, a trade-off must be asdumeee: the higher tha value chosen (that is, the higher the

intracluster cohesion), the bigger the number ¢foudata. In the example presented in this papevas chosen equal
to 0.8.

Optimal c calculation

The uncertainty about topology renders impossible the calculation of dpptimal number of clusters right from the
analysis of the set partition induced by some chaseén the transitive closure of the matrix relatidnstead, it is
preferable to apply thee-means objective function-based method to the saaple once it has been pruned from non
representative data.

After the sample depuration, the fuzzyneans fcm) method is applied for several valuesmfoptimizing the objective
function (11) with algorithm 2 ifn>1 or using its varianthcm) if m=1. Next, corresponding values &f(c) are plotted
versusc values in order to obtain its behavior as a fumctf the number of clusters in a range that odggs must
contain the optimal value far

With the set of data pairs,(J) and some appropriate numerical method, for exartipear or polynomial regression
[4], the best representative curve for the emplayethod can be obtained in order to have a referemwhich the raw
data curve is contrasted and the relative eeer® calculated for eactvalue as

R CERMCN
JIm(c)
where J,, is the unadjusted objective function adg, is the same function previously adjusted. The evadfic for
which e maximizes, is then chosen as the optimal one.

(20)

In the example described in section 5, insteadsofgu(11) for the objective function, a reformutetiof it was taken,
whereJ,,, appears as a function only\éhbut is completely equivalent in terms of results{].

Form=1, the classical hcm method, the reformulatedativie function is
R(V) = > mindi} (21)
k=1 i0ON¢
wheredy, =|| X, — X |l

And form>1, the fcm method, the reformulated objective function i§]3,
1-m

n C i
Ry (V) = kz= > (djzk)l—m (22)

=1

So, in the example it iR, that is optimized instead df, since the reformulation theorem demonstratedjipfovides
theoretical justification for this approach.

Although the procedure described here cannot cdeiplguarantee the arrival to the best valuec,ohor even the
validity of X classification, it yields however an appreciahtéfar it permits a better cluster limit definiticas proved
in the implementation described below. A questmbe taken into account regarding the proposedadedpplicability
is the greatest increment between two consecativelues in (0, 1) from the transitive closure maRj if the analyst
considers that greatest increment too large cordparthe rest in the whoke spectrum oR, and besides, if the induced
partition by the largea value of the two values forming that greatesténoent renders avalue different from that of
the method proposed here, then probably, furthelyais must be made in order to elucidate the @dtiralue forc.



Memory size for matri>® would normally be Qf), but one can profit from the symmetry and reflétyi properties of
R in order to save the whole lower triangle matipace with the diagonal included. Thus, onlyn@{1)/2) matrix
space is occupied, that is, less than’@].

Matrix processing time is frequently quite long f@al values oh. The transitive closure calculation described in
algorithm 1 is very time demanding as verifiedhie example presented where2000. In order to improve processing
time and to save memory space, in the following, pnoposed algorithm is presented in a sequentiedion that
implements matriR in a one-dimensional array (algorithm 3), and &lbel version of it (algorithm 4) that speeds up
the heaviest parts of the process.

For the example problem implementation, the hardwaitized consisted of Pentium Il processors, asith 400 Mhz
clock and 32 MB memory. A LINUX network of six maohs was used for the parallel version, with fumcsi for
message communication from the MPICH library ahdh&l code in C language.

Utilized Algorithms

ALGORITHM 3. SEQUENCIAL PROCESSING

Step 1 Choose values @f m, a, g, T and norm || . || for measuring distances in datéov spacél®. Input data
to memory and save them in matkxs

Step 2 Calculate the value @for (6).

Step 3 Form strictly triangular upper matriX which represents the compatibility relation deéirby (6).
Implement it in a unidimensional array so as toimige memory use.

Step 4 Find the transitive closure of matfk(algorithm 1) through max-min composition operasiaefined
by (5)

Step 5 RunR row by row in search of classes with member nunaloeial to or greater thanat levela. If
found, save their members, one by one, in a fildepfured data.

Step 6 Apply algorithm 2 to the' data from depured data file.

Step 7 Enter depured data in another maXjx s and apply steps 2 to 4 to them.

Step 8 Sort founda values in transitive closure matiXgy s

Step 2 Find greatest increment between two consecutiuges ofa, excluding unity. End.

As mentioned before, parallel processing was chmig with message passing interface MPICHC, whieimand the
storage of the whole data set in each processepamently. The employed algorithm for parallelgessing is the
following one:

ALGORITHM 4. PARALLEL PROCESSING
Step 1 Choose values af, m, a, €, T and norm || . || to measure distanceSinEach processafter being
spawned and identified, input data sample and teara in matrixXss
Step 2 Each processdivide the data in equal shares so as to work onlits corresponding share. Each share
is identified by its lower and upper row and colulinnits in theR matrix to be built.
Step 3 Each processcalculate thé value with (6) on its share data.
Step 4 Each process(except the master): send to the master the feahte ofd. The masterreceive thed
values of each processor and calculate the fifakwvas the minimum of them.
Step 5 The mastersend to all other processes the final valud,othen build its share of matriR. Each
process (except the master): receive the fiRalalue, then build its share of matik R must be a strictly
triangular upper matrix implemented in a one-dinn@mesl array to minimize memory use
Step 6 Each process(except the master): Send to the master its shfaneatrix R. The masterreceive other
processes share of matRand complete matrix it.
Step 7. The mastersend to each process the whole ma®jiexcept for the process share of it, which isaalye
updatedEach procesg(except the master): Receive the updated pd&Rtasfd complete it.
Transitive closure iteration start.
Step 8 Each processFind the transitive closure & (algorithm 1) with max-min composition defined ()
in an iterative way on its share of matRxVerify whether it still changes.
Step 9 Each process(except the master): send to the master its epdshare of matriR and the change
statusThe masterreceive theR updated share an the information on change stahen complete matriR
with the updated shares received and decide wheglsop or not on change status.



Step 10 The mastersend to each process the whole maRixexcept for the process share of it, which is
already updated and the information whether to stopot. Then, if more iteration is required, gostep 8,
otherwise escape the iterative procdssch procesgexcept the master): receive from the master thelav
matrix R, except for its already updated share, and thernmition whether to stop or not. Then, if more
iteration is required, go to step 8, otherwise psdae iterative process.

Transitive closure end

Step 11 The masterrun matrixR row by row in search of classes with member nunelggral to or greater than
T at levela, if found, save its members sequentially one aftether in a depured data file.

Step 12 The masterapply algorithm 2 to data from depured data file.

Step 13 Each processe@ne as mastégr. enter depured data into matiy, s and apply steps 2 through 10 to
them.

Step 14 The mastersort founda values in the new transitive closure magix

Step 15 The masterfind the larger increment between two adjaceeikcluding unity. End.

In algorithm 4, sections corresponding to algorithrand the sort procedure were not parallelizedesthey turned out
to be fast to process.

5 APPLICATION EXAMPLE WITH REAL DATA

Next is the proposed method example: to clustea daginated in a 1996 household survey by thequargan national

statistics institut (DGEEC) and converted to a)éetith n = 2000 ands = 19, they describe to welfare/poverty level of
paraguayan households [1].

Parameters Selection:

Number of data in sé n = 2000,

Vector space dimensionalitg= 19.

Norm for measuring distances in vector spaég| . || = Euclidean distance.
Membership degree at which pruning is appleee: 0.800.

Pruning thresholdT = 20.

Fuzziness Parameten= 1.0, 1.5 and 2.0

Domain forc: N, ={1, 2, 3, 4, 5, 6}.

Results:

After depuration of classes with less than 20 datna level equal to 0.800, the number of data fell fram 2000 to
n' = 1716 depured data. Table 1 shows the objectinetion before and after depuration. These valum® plotted as
function of the number of clusters; such curvesstui@vn in figure 1.

In the three columns that show ratios of objecfivections R.(1716)/R(2000)) one can appreciate the relative gains
obtained with depuration. Comparing these valugbdaelative amount of remaining data: 1716/200D858 one can
conclude that in all cases, there is gain nottleas 6,29 %.

CLASSES Rm Rm(1716)/ Rm Rm(1716)/ Rm Rm(1716)/

Rm(2000) Rm(2000) Rm(2000)

C FCM N=1716 FCM N=2000 FCM N=1716 FCM N=2000 HCM N=1716 HCM N=2000

m=2.0 m=2.0 m=1.5 m=1.5 m=1 m=1

1 2611.37793| 3284.38599| 0.79509| 2611.37793| 3284.38599| 0.79509| 2611.37793| 3284.38599| 0.79509

2 1305.68506| 1642.19214| 0.79509| 1760.34705| 2240.12427| 0.78583| 2001.88696| 2577.9729| 0.77654

3 868.354675| 1094.79456| 0.79317| 1408.27417| 1806.38074| 0.77961| 1742.86304| 2279.17798| 0.76469

4 652.842529| 821.091675| 0.79509| 1204.25012| 1555.86182| 0.77401| 1650.30066| 2080.76978| 0.79313

5 520.302673| 656.876709| 0.79209| 1065.15515| 1385.37195| 0.76886| 1481.51685| 1988.79163| 0.74493

6 435.226807| 547.395081| 0.79509| 965.527588| 1259.49756| 0.76660| 1347.32446 1817.5] 0.74131

TablE 1. OPTIMIZED OBJECTIVE FUNCTION VERSUS NUMBER OF CLASSES



Fig.1 OBJECTIVE FUNCTION VERSUS C
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The improvement with the depured data can alsopipeeaiated by analyzing the (center) interclusistatice to see
whether they increased or not. Table 2 shows tdase before and after pruning. Here again appeaaeppreciable
improvement in the depured data structure. Thedueigumps form=2 are because the centroids tend to converge
towards the gravity center of the whole systemmascreases. Even so, when dealing with depured fata=2 and 5,

the centroids are still distinguishable.

MEAN DISTANCES BETWEEN DATA CENTERS c
Fcm Fcm Hcm Fcm Fcm Hcm
(N=1716, m=2.0) (N=1716, m=1.5) (N=1716, m=1) (N=2000, m=2.0) (N=2000, m=1.5) (N=2000, m=1)

0.509541 1.049221 1.218446 0.011008 1.006381 1.209035 2
0.023163667 1.093870667 1.327383667 0.006606 1.014772667 1.312597667 3
0.011550667 1.107226833 1.307179333 0.022484833 0.996500667 1.284681167 4

0.375676 1.1410182 1.297077167 0.0133548 1.024883 1.2474199 5
0.018964133 1.153019867 1.377146733 0.022904467 1.056879733 1.342468867 6

Tabla. 2 MEAN DISTANCES BETWEEN CENTROIDS VERSUS NUMBER OF CLASSES

Fig. 2 MEAN DISTANCES BETWEEN CENTROIDS
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Optimal c value proceeds from data shown in taBlasd 4. Table 3 shows the natural logarithmRplbefore pruning,
with 2000 data; and after pruning, with 1716 datable 4 however show the relative errors calculatgd (20). There
one can note in all cases, the maximum value vefipect to the best representative curve drawnnegailiregression
with least squares is obtained whea 3, indicating that three is the optimum valuecoh is interesting to verify that



among alla values from the spectrum obtained, in the inte(@all), the greatest jump happens between 0.791544
anda, = 0.725409, and the number of classes inducedrfar-cut in the interval (0.725409, 0.791544] overjturns
out to be three!

NATURAL LOGARITHMS OF Rm c
Fcm(N=1716, m=2.0) | FCM(N=1716, m=15) | HCM(N=1716, m=1) | FCM(N=2000, m=2.0) | FCM(N=2000, m=1.5) | HCM(N=2000, m=1)
7.8676333 7.8676333 7.8676333 8.096935 8.096935 8.096935 1
7.17448313 7.47326625 7.6018455 7.4037873 7.71428662 7.85475867| 2
6.76660024 7.25012024 7.46328446 6.998322 7.49908053 7.73157012| 3
6.48133595 7.09361235 7.40871277 6.71063477 7.34978489 7.64049319 4
6.25441071 6.97087575 7.30082174 6.48749634 7.23372394 7.59528251 5
6.07586729 6.87267468 7.20587603 6.30517081 7.13846816 7.50521721 6
Table 3 OBJECTIVE FUNCTION NATURAL LOGARITHMS VERSUS NUMBER OF CLASSES
DEVIATIONS OF LN(RM) WITH RESPECT TO THE ADJUSTMENT VERSUS C ¢
fcmn=1716, m=2.0) | fcm(N=1716, m=1.5) | hcm(N=1716, m=1) | fcm(N=2000, m=2.0) | fcm(N=2000, m=1.5) | hcm(N=2000, m=1)
0.00490882 0.00297064 0.00333274 0.00484857 0.00288372 0.00277708 1
0.04164153 0.02369716 0.01525417 0.04035615 0.02242803 0.01385772 2
0.0527268 0.02878357 0.01769208 0.05074232 0.02721679 0.01580916 3
0.04689882 0.02497572 0.00897467 0.04538686 0.02348052 0.01367035 4
0.03141711 0.01619785 0.00721874 0.0298295 0.01503335 0.00546449 5
0.00628562 0.00337917 0.00361361 0.00615821 0.0032509 0.00297883 6

Tabla 4 RELATIVE ERRORS OF NATURAL LOGARITHMS OF Rm VERSUS NUMBER OF CLASSES
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The speedup for the parallelized version is shawtable 5. Up to six processors were tried, whenattiditional time
gain became absolutely marginal showing a poorbdély as communication time takes over. Howeeym one to
two processors, there is a great reduction whignagehes linear speedup. Figure 4 shows this trend.

PROCESSORS TIME (seg) Fig4. TIME UNTIL TRANSITIVE CLOSURE
1 9425
2 4877.5
10000 -

3 3885 " 8000 - \
4 2620 g 6000
5 2230 g 4000 \ )
6 2224 2003

Table 5 TIME VERSUS PROCESSORS . ) 5 . . .

6 CONCLUSION processors

The example presented verifies the applicabilityttef method proposed. It was found that the optiwadle for the
number of paraguayan household classes (the ecoabechasses) is three: high (rich) , medium and (pwor) classes.

The result with real data allows to affirm that ffreposed method inded helps in getting additiémfarmation on the
sample topology, that ameliorates the classificatibtained. And the price paid for it although mary, can be
considered quite affordable.

The applicability scope may be very vast. So thrkwshows a way to consider for cluster analysid pattern
recognition applied to more complex problems.
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