
Improved AntNet routing

Benjamín Barán
National Computer Center

National University of Asuncion
P.O.Box 1439, San Lorenzo, Paraguay

Phone: (+595-21) 585550, email: bbaran@cnc.una.py

Abstract-AntNet is a new algorithm for packet routing in
communication networks. In AntNet, a group of mobile
agents (artificial ants) build paths between pair of nodes,
exploring the network concurrently and exchanging data to
update routing tables.

This work, based in a previous work of the author [3],
analyzes AntNet algorithms and proposes improvements,
comparing their performance with respect to the original
AntNet and other commercial algorithms. Simulation results
indicate a better throughput of the improved proposals. So,
AntNet and its variant here proposed are promising options
for routing in large public networks such as Internet.

Keywords: Routing, AntNet, Trhoughput, delay.

INTRODUCTION
Routing in a data network is the action of addressing data

traffic between a pair of nodes source-destination, being
this, fundamental in a communication network control. In
conjunction with a flow control, congestion and admission,
routing determines the total network performance, in terms
of quality and amount of offered services [9]. The routing
task is performed by routers, which update their routing
tables by means of an algorithm specially designed for this.
The first routing algorithms addressed data in a network
minimizing a cost function, like physical distance, link
delay, etc [10,14]. However, throughput optimization
remained in a second plane, possibly due to a relatively
small amount of users. This is the case of the RIP algorithm
(Routing Information Protocol), based on the distance-
vector method and the OSPF (Open Shortest Path First)
algorithm, thoroughly used in Internet, based on the link-
state method. Both methods choose the path with minimum
cost (generally the shortest path) between a pair of nodes
[7]. This could produce bottlenecks, because this path could
congest, in spite of other paths, possibly expensive, but not
congested [13].

Unfortunately, traditional routing methods, due to the
limitations explained above, do not have enough flexibility
to satisfy new routing demands, like new network services,
and the impressive increase in the amount of users that
forces the network administrators to improve throughput in
order to satisfy the immense amount of users that
simultaneously request services. This situation has impelled
the study and develop other routing methods as LBR (Load
Balancing Routing) [2]. This method addresses routing by

distributing load over all possible paths improving network
throughput, because congestion probability decreases in the
shorstest path links.

Nowadays, other very studied routing alternatives are
based on mobile agents [7, 9, 12]. Inspired in those
algorithms, this work analyzes an algorithm based on mobile
agents, known as AntNet, which was first proposed by M.
Dorigo and G. Di Caro, of the Free University of Brussels-
Belgium [7-9]. AntNet was inspired in previous successful
works, based on ant colonies (ACS: Ant Colony Systems)
[1, 5, 6, 12]. ACS is an optimization method where artificial
ants move around a graph, which represents the instances of
the problem; so, they move building solutions and
modifying the problem using the obtained information, until
they find good solutions to the problem.

The ACS concept is used in AntNet. Here, each artificial
ant (or mobile agent) builds a path from its source node to
its destination. While an ant builds a path, it gets
quantitative information about the path cost and qualitative
information about the amount of traffic in the network.
Then, this information is carried by another ant travelling
the same path but in the opposing direction modifying the
visited nodes routing tables. The first simulations with
AntNet (1997-98) showed promising results, overcoming
classic algorithms like RIP and OSPF [7-9]. So, it seems a
valid option for data routing.

The present work is based on two versions of Dorigo and
Di Caro AntNet [7-9]. The version published in [9] (here
denominated AntNet1.0) had a better performance than the
one presented in [7]. Based on AntNet1.0, this paper
proposes an improved version: AntNet1.1, which was
implemented in C language together with AntNet1.0,
besides versions of RIP, OSPF and LBR. Simulations results
show a better throughput and packet delay for AntNet1.1
than for other Antnet versions.

ANTNET 1.0 ALGORITHM
Suppose a data network, with N nodes, being s a generic

source node that generates an agent (or ant) toward a
destination d. Two types of ants are defined:

Forward Ant, or Fs→d, which will travel from a source s to
a destination d.

Backward Ant, or Bs→d, that will be generated by a
forward ant Fs→d in the destination d. It will return to s
through the path used by Fs→d.

In its way to s, Bs→d updates routing tables of the visited
nodes using the information already collected by Fs→d.
Every ant carries a stack Ss→d(k) of data, where the index k
refers to the k-est visited node in a journey, where Ss→d(0)=
s, Ss→d (m)= d, being m the jumps done by Fs→d to reach d.

Let k be any network node; its routing table will have N
entries, one for each possible destination.

Let j be a entry of k routing table (possible destination).
Let Nk be the set of neighboring nodes of node k.

Let Pji be the probability with which an ant or data packet
in k, jumps to a node i, i ∈ Nk, when the destination is j
(j≠k). Then, for each of the N entries in node k routing table,
it will be nk values of Pji with:

N,...,1 ,1 ==�
∈

jP
kNi

ji
 (1)

 In what follows, AntNet1.0 pseudocode is presented.

 BEGIN
{

Routing Tables Set-Up: For each node k the routing tables are
initialized with a uniform distribution of probability:

k
k

ji Ni
n

P ∈∀= ,
1

(2)
DO always (in parallel)
{

STEP 1: In regular time intervals, each node s launches an Fs→d ant
to a randomly chosen destination d.
/*when Fs→d reaches a node k, (k≠d), it performs step 2*/
DO (in parallel, for each Fs→d)
{

STEP 2: Fs→d pushes in its stack Ss→d(k) node k identifier and the
time between its launching from s to its arriving to k.
Fs→d selects the next node to visit in two possible ways:
(a) It draws between i nodes, i ∈ Nk, where each node i has a

Pdi probability (in the k routing table) to be selected.
IF the node selected in (a) was already visited

(b) It draws again the jumping node, but now with the
same probability for all neighbors i, i ∈ Nk.

IF the selected node was already visited
STEP 3: A cycle is found. Fs→d pops from its stack all
data of the cycle nodes, because the optimal path must
not have any cycle. Fs→d returns to 2 (a) if the time
spent in the cycle is less than a threshold; else it dies in
order to avoid infinite loops.

END IF
END IF

} WHILE jumping node≠≠≠≠ d
 STEP 4: Fs→d generates in d another ant, called backward ant Bs→d.
Fs→d transfers to Bs→d its stack Ss→d.
/*Bs→d, will return to s,following the same path used by Fs→d*/
DO (in parallel, for each Bs→d ant)
{

/*When Bs→d arrives from a node f, f ∈ Nk to a node k, it performs
step 5*/
STEP 5: Bs→d updates the k routing table and list of trips, for the
entries regarding to nodes k’ between k and d inclusive, according
to the data carried in Ss→d (k’), increasing probabilities associated
to path used and decreases other paths probabilities, by mean of a
criteria explained in [7].
IF k≠s

Bs→d will leave k and jump to a node given by Ss→d (k-1).
END IF

} WHILE (k≠s)
}

 }END

The main differences between the two already published
versions of AntNet algorithms [7-9] are the following:
• In [7], the destination node d for a mobile agent is

selected randomly. However, in [9], the destination
node is selected according to the data traffic patterns
generated by the local workload.

• The first version of AntNet given in [7] only considers
routing table information when a Forward Ant (Fs→d)
selects a next node during a travel towards destination.
However, AntNet 1.0 considers also buffer use to
calculate a better estimation of buffer delay.

• Each node k has a data structure of size 2N known as
List Tripk(µi, σi), where µi and σi are the mean an
variance for trip times Tk→i performed by ants traveling
from node k to all other nodes i in the network. This
data structure plays a role of data traffic local
estimation. The List Trip in [7] is updated using all
measured trip times (from the first trip time to the last).
In turn, the List Trip updating is performed in [9] using
windowed strategies. For this, a factor η is defined to
indicate how many of the last trip time samples will
have a moving window W and consequently, how many
samples will really influence the calculation of µ and σ.

• For routing tables updating, each version uses a
different heuristic calculation method (see formulae in
[7-9]). From these two alternatives, a better
performance was reported with the method proposed in
[9].

ANTNET1.1: AN IMPROVED VERSION OF

ANTNET1.0
AntNet1.1 basically uses the same pseudocode as

AntNet1.0. However, several modifications were
implemmented in order to improve the performance of
AntNet1.0. These modifications are briefly explained here.

Intelligent Initialization of Routing Tables

AntNet versions do not specify an initialization method
for the routing tables [7-9]. For this reason, a uniform
distribution of probabilities is assumed, according to the
initialization given in the presented pseudocode. Due to this
situation of no a-priori knowledge, here we propose an
initialization of each routing table that reflects a previous
knowledge about network topology. Furthermore, an initial
greater probability value is assigned to the neighboring
nodes that simultaneously could be destinations. This saves
network resources, because it is possible to reach the
destination using just a link. For a node k this could be as
follows:

a) If a destination node d for a table entry is at the same
time a neighbor node, that is d∈ Nk, then the initial
probability in the routing table of k is given by:

2

)1(

2

31

k

k

k
dd

n

n

n
P

−∗+= (3)

The other neighbors nodes (i≠d), i ∈ Nk, will have:

�
�

�

�
�

�

�

=

>∗−

=
1 if0

1 if
1

2

31
2

k

k
kk

di

n

n
nn

P (4)

Of course, (3) and (4) satisfy (1).

b) If the destination d is not a neighbor node, then a
uniform distribution is initially assumed:

k
di n

P
1= (5)

Due to the network topology knowledge reflected by the
initial probability values in the routing tables, this method
showed a shorter transient regime than the one observed in
simulations with AntNet1.0.

Intelligent Update after Network Resources Failures
Original AntNet algorithms [7-9] do not mention the
following cases:
1. Updating of routing tables in case of links or node

failure, that is, immediately after a node k loses its link
lkj with its neighbor node j. First, it was supposed that if
an ant is in k, the probability Pdj, to a destination d
through node j, (i.e. to use the link lkj), is distributed
uniformly between the remaining nk -1 neighbors for the
entry d in the routing table of k. Mathematically:

Pdj =0, during a link lkj failure (it is not possible to travel
from k to j for arriving to d).

k
k

dj
didi Njiji

n

P
PP ∈≠∀

−
+= , ,

1
 (6)

Alternatively, this work proposes the idea of new Pdi
values immediately after the lkj link failure. These
probabilities will be proportional to their relative values,
before the failure, instead of "forgetting" what it has
learned until the moment of the failure, according to (6).
So, in k, after the failure of lkj link, a factor Q is
calculated as:

dj

dj

P

P
Q

−
=

1
 (7)

then, Pdi is updated according to:

() kdidi NijiPQP ∈≠∀∗+= , 1 (8)

logically, during the lkj link failure Pdj=0.

This method reflects node knowledge about the
network traffic and topology before the failure, so a
better performance is expected.

2. Updating of routing table for the k-j node pair when the
link lkj is up at time t2, since this link was down at time
t1, 0<t1<t2. AntNet1.0 uses a routing table
reinitialization for k and j according to (2), losing the
learned information right before the link failure.

As alternative, this work proposes a reinitialization
subject to a commitment between learned information
until instant t1, before the failure, and total ignorance of
the node as in t= 0. The probabilities in the routing

table of k, whose link failed in t1, but recovered in t2
will be:

() () () () 10 01 12 <≤∗+∗−= λλλ tPPtP dididi (9)

The factor λ is a constant, known as coefficient of
memory. Its value indicates how much it remembers
what it had learned until time t1. After several tests, an
empiric value of 0,6 was adopted. This makes more
robust the algorithm allowing a faster recovery time.

Noise factor

With the routing tables updating methods in original
versions of AntNet, the distribution of probabilities
eventually "would freeze" with a probability value, close to
one, and the rest of them could remain with insignificant
values. With this, in any node, the ants and data packets
would mostly choose the output line with the highest
probability (not using other possible paths). To prevent this,
we define a f noise factor, so, every time that an ant should
jump to a following node, it chooses a node with a
probability f, according to an uniform distribution of
probabilities, and with a probability (1-f), according to the
probabilities stored in the routing tables [12]. With this, the
ants by “accident” can discover new and better paths. So,
potentially both the delay and throughput could improve.

Dual Method Randomic and Deterministic:
In the original AntNet of Dorigo and Di Caro, being in a

node k, a data packet, whose destination is a node d≠k, will
select a jumping node j randomly, according to Pdj, ∀j ∈ Nk.
The present work considers a deterministic method of
selecting a jumping node [11]. Whenever a node k have in
its queue M packets, it calculates the number of packets to
be routed via each of their neighbor nodes according to their
probabilities associated for each destination. Therefore, ∀j
∈ Nk a number of Mj≅M*Pdj packets will be routed through j
[11].

In each node, packets will decide randomly whether to use
the usual method (random) or the deterministic method, in
order to choose the jumping node. Particularly, the best
behavior was observed for P=0.5, where P is the probability
of using the random method, normally used in AntNet1.0.
So, for a data packet, there will exist a probability P=0.5 of
using the random approach, and a probability 5.0=P of
using the deterministic method, when it travels to the
destination d. For AntNet1.0, P=1.

Control of the number of ants inside the network

Original versions of AntNet do not mention any method
to maintain control of the total numbers of ants moving
inside the network, which, under certain circumstances,
could contribute to congestion. In order to control the
number of ants, the total number of ants was limited to an
amount four times the number of network nodes, because
this is an average number of links for each node in the
networks used (Figs. 1,2). With this method, simulation
results were improved.

Seft-destruction of Ants
In order to avoid infinite loops, self-destruction of a

forward ant Fs→d occurs if the amount of jumps in a cycle is
higher than half of the already accumulated number of
jumps.

When a backward ant Bs→d can not return to its source
node because its return trip was interrupted, due to either a
link or node failure, it is self-destroyed, because the
information stored in its stack does not reflect anymore the
real state of the network. Regarding the implementations,
these situations were important, so they were added to
AntNet1.0 and AntNet1.1.

EXPERIMENTAL RESULTS
All the algorithms mentioned before, were implemented

with a parallel behavior simulated with serial code. A data
traffic simulation analysis was done for each time slot.

The parameters used in order to evaluate each algorithm
performance are:
• Instantaneous Packet Delay. It is the average delay of

all data packets routed successfully for a given time slot
t during an algorithm simulation.

• Average Packet Delay. It is the average delay of all data
packets well routed during the whole simulation period.

• Instantaneous Throughput. It is the amount of packets
routed successfully for a given time slot t during an
algorithm simulation

• Average Throughput. It is the average amount of
packets routed successfully during the whole simulation
period.

• A benchmark was established for the simulations.
Twelve simulation scenarios, as shown in Table I,
composed this benchmarkc.

 Lost Packet
threshold

Transient
Regime

Link
Failure

Node
Failure

Hot
Spot

Low Traffic 5% ✓ ✓ ✓ ✓
Medium Traffic 10% ✓ ✓ ✓ ✓

High Traffic 20% ✓ ✓ ✓ ✓
TABLE I: Benchmark used to analyze each of the above paradigm

network.

For each simulation cycle, a traffic simulator stops

generating packets when a certain fraction (expressed in %)
of the generated packet does not arrive to destination (Lost
Packet threshold). The link transmission delay is used as
metric for link costs, expressed in milliseconds.

For simulations, three networks were used as models:

• A fictitious simple network of 8 nodes and 9 links for
extensive simulations [4].

• The NSFNET network, of the National Science

Foundation (United States), with 14 nodes and links of
1.5 Mbps (Fig.1 shows the net with links delay in [ms]).

• The NTTnet network, of the Nippon Telephone

Telegraph (Japan), with 57 nodes and links of 6 Mbps
(Fig. 2).

Figures 3 to 8 and Tables II and III show the simulation

results for some of the experiments performed for the last
two networks and only for medium traffic. In the tables that
follows, THR means average throughput and AVP: average
packet delay. Other abbreviations are AntNet1.0 = A1.0 and
AntNet1.1 = A1.1.

Experimental results with the NSFNET

Table II shows results of average parameters for a
transient regime experiment for AntNet algorithms and for a
transitory link failure (link 5-6, Fig. 1). Figures 3-4 show the
instantaneous average delay and throughput for a typical
experiment, concluding the following:

• Transient Regime. It can be observed in Table II how

A1.1 "learns" quicker (better throughput and packet
delay) than A1.0. This is due mainly to the routing
tables intelligent initialization and the use of dual
method for hop node selection.

• Link 5-6 Failure: Throughput. RIP and OSPF
throughput decreases completely at the instant of the
failure (Fig. 3); however, AntNet algorithms are not
severely affected, demonstrating their robustness. A1.1
has the best instantaneous and average throughput (Fig.
3 and Table II). This is due mainly to the routing tables
intelligent reinitialization method. LBR had the worst
performance.

1

4

2

3

5

6

7

10

8

9

14

13

12

11

7
7

7

7

8

11

9

16

5

8

7

5

4

8

14

15

7

9
9

13

20

Fig.1. NSFNET

1

24

22

23

21

20

16

18

19

13
15

12

17

14

10

9

11

8

4

7

6

5

3

2
0

29

26

30

28

25

37

34

27

33

35

36

32
31

50

51

49

48

47

46

45

44

43

41

42

38
39

40

53

54

52

10

12

2023

21

20

15

12

18

12

18

15

17

22

40
17

17

20

21

20

15

14
1310

12 10 11

11

11

13 1711

12

11
11

12

10

17

16
11

12
16 11 15

23

17

11

12

11

10

19

16

23

50

20
12

11

12

21

27

20

11

22
28

16

21
17

12
27

19

13

Fig. 2. NTTnet

 RIP OSPF LBR A1.0 A1.1
Transient THR [packets] 4716.79 5079.46

Regime AVP [ms] 27.17 24.02

Link 5-6 THR [packets] 4347.61 4450.33 4090.09 4844.56 5174.47

Failure AVP [ms] 21.06 20.1 28.7 25.58 23.89

Table II: Experimental Results for average throughput and packet delay

• Link 5-6 Failure: Packet Delay. All algorithms are

proportionally affected (see Fig. 4) during the failure.
RIP and OSPF maintain an inherent advantage in this
figure of merit (see Fig. 4 and Table II). Here, A1.1
overcome A1.0 again, in both instantaneous and average
packet delay. Again LBR had a poor performance.

Experimental Results with the NTTnet

In what follows, simulation results using NTTnet (Fig. 2)
for node failure and hotspot experiments are discussed.
• Node 37 failure: Throughput. The robustness of AntNet

algorithms can be observed, with relationship to RIP and
OSPF, at the instant of the failure (see Fig. 5). However,
A1.0 has the slowest recovering after the node failure.

Particularly, A1.1 has the best average throughput (see
Table III).

• Node 37 Failure: Packet Delay. It is observed that all the

algorithms are affected proportionally (see Fig. 6). A1.1
show a smaller average and instantaneous packet delay
than A1.0 (see Table III and Fig. 6). A1.0 just was better
than LBR in this experiment.

• Transient Hotspot: Throughput. Node 41 was chosen as

a hotspot. Again, in instantaneous an average
throughput, A1.1 has the best performance (Fig. 7,Table
III).

 RIP OSPF LBR A1.0 A1.1

Node 37 THR [packets] 9999.03 9977.27 7976.7 9886.11 12268.34

Failure AVP [ms] 105.08 109.08 122.34 117.75 114.75

Transient THR [packets] 8736.23 8848.26 8717.98 9423.13 11759

Hotspot AVP [ms] 104.26 102.63 116.76 116.25 112.58

Table III: Experimental results for average throughput and packet delay

2500

3000

3500

4000

4500

5000

5500

15 105 195 285 375 465 555 645 735 825 915 1005

TIME [m s]

P
A

C
K

E
T

S

RIP

OSPF

LBR

A1.0

A1.1

Fig. 3. NSFNET Link 5-6 failure. Instantaneous throughput

18

23

28

33

38

43

48

15 105 195 285 375 465 555 645 735 825 915 1005

TIME [m s]

D
E

L
A

Y
 [

m
s]

RIP

OSPF

LBR

A1.0

A1.1

Fig. 4. NSFNET Link 5-6 failure. Instantaneous packet delay

0

2000

4000

6000

8000

10000

12000

14000

1 5 9 13 17 21 25 29

TIME [m s]

P
A

C
K

E
T

S RIP

OSPF

LBR

A1.0

A1.1

Fig. 5. NTTnet Node failure. Instantaneous throughput

100

110

120

130

140

150

160

1 5 9 13 17 21 25 29

TIM E [m s]

D
E

L
A

Y
 [

m
s]

RIP

OSPF

LBR

A1.0

A1.1

Fig. 6. NTTnet Node failure. Instantaneous packet delay

• Transient Hotspot: Packet Delay. During the hotspot the

delay of the algorithms is smaller due to the
geographical position of the hotspot (Fig. 3), which is
approximately equidistant to all nodes. According to
Figure 8 and Table 3, again A1.1 has a better behavior
than A1.0.

After the analysis of simulation results for each of the 12
scenarios for the three tested networks (for a total of 36
experiments), the following general conclusions can be
inferred:
• In all our experiments, AntNet1.1 had a shorter

transient regime, a better throughput and a shorter
packet delay than A1.0, demonstrating the
improvements of the modifications here proposed.

• AntNet algorithms are more robust than RIP, OSPF and
LBR algorithms, in the case of link and node failure,
because their instantaneous throughput does not decay
completely at the instant of a failure (see Figs. 5 and 7).
However, they have a slower recovery than RIP and
OSPF, during these failures.

• RIP and OSPF had always less throughput than
AntNet1.1; however, they always performed better in

packet delay, because RIP and OSPF mainly optimize
delay, relegating throughput to a second plane, as it was
previously discussed. However, this characteristic
becomes a disadvantage, because the current
simultaneous demands of network services are growing
fast, consequently, throughput becomes a new priority.

CONCLUSIONS
This work introduced AntNet, a novel adaptive routing

technique for data networks, based on mobile agents, whose
use is currently oriented towards packet switching networks,
such as Internet. After presenting the original versions, the
best original AntNet algorithm (here called AntNet1.0) was
briefly described. Several modifications of AntNet1.0 were
proposed, and a final version was called AntNet1.1.

AntNet algorithms, in addition to RIP, OSPF and LBR
(Load Balancing Routing, in development phase [2]) were
implemented and simulated. A better performance of
AntNet1.1 with respect to throughput was observed
throughout all our experiments for three types of traffic
called: low, medium and high and for each of the three
tested networks. The modifications implemented in
AntNet1.1 that contributed the most for a better behavior
were: routing tables intelligent initialization and the dual
method of selecting jumping nodes.

In general, results of different experiments remained with
the same patterns. RIP and OSPF showed a smaller
instantaneous and average packet delay, in all our
experiments and for the three types of traffic. Results
obtained in a different simulation scope suggest that AntNet
algorithms could have better throughput as well as packet
delay than the other traditional algorithms [7-9]. If this is the
case, it is equally expected that AntNet1.1, proposed in this
paper, will have a better performance than AntNet1.0, given
that our modified version outperform the original AntNet
algorithm in all the experiments.

Based on the performed experiments, it is also expected an
efficient AntNet1.1 behavior with: flow control, congestion
and admission schemes. Therefore, it can be inferred that a
commercial implementation of this algorithm may be
feasible and its use can be considered for large networks,
such as Internet, as a future option when throughput is the
main concern.

REFERENCES

[1] Almirón M., Barán B. & Chaparro E., “Ant Distributed
System for Solving the Traveling Salesman Problem,”
XXV Informatic Latinoamerican Conf.-CLEI, Paraguay,
pp.779-789, 1999.

[2] Bak S., Cobb J. & Leiss E., “Load Balancing Routing
via Randomization,” XXV Informatic Latinoamerican
Conf.-CLEI, Asuncion-Paraguay, pp.999-1010, 1999.

[3] Barán B. & Sosa R., “A New Approach for AntNet
Routing”, International Conference on Computer
Communication and Networks IEEE ICCCN-2000, Las
Vegas - Estados Unidos. 2000.

0

2000

4000

6000

8000

10000

12000

14000

1 5 9 13 17 21 25 29

TIME [m s]

P
A

C
K

E
T

S

RIP

OSPF

LBR

A1.0

A1.1

Fig.7. NTTnet hotspot instantaneous throughput

90

100

110

120

130

140

150

160

1 5 9 13 17 21 25 29

TIME [m s]

D
E

L
A

Y
 [

m
s]

RIP

OSPF

LBR

A1.0

A1.1

Fig. 8. NTTnet hotspot instantaneous packet delay

[4] Barán B. & Sosa R., “AntNet: Routing Algorithm for
Data Networks based on Mobile Agents”, Argentine
Symposium on Artificial Intelligence ASAI’ 2000,
Buenos Aires, Argentina, 2000.

[5] Dorigo M., Maniezzo V. & Colorni A., “The Ant
System: Optimization by a colony of cooperating
agents,” IEEE Trans. Systems, Man, and Cybernetics-
Vol.26,N 1, pp.1-13, 1996.

[6] Dorigo M. & Gambardella L., “Ant Colony System: A
Cooperative Learning Approach to the Traveling
Salesman Problem,” IEEE Trans. on Evol.
Computation, Vol.1, N 1, pp.53-66, 1997.

[7] Dorigo M. & Di Caro G., “AntNet: A Mobile Agents
Approach to Adaptive Routing,” Tech. Report,
IRIDIA- Free Brussels University, Belgium, 1997.
http://iridia.ulb.ac.be/dorigo/ACO.

[8] Dorigo M. & Di Caro G., “Ant Colonies for Adaptive
Routing in Packet-switched Comm. Networks,”
Technical Report, IRIDIA-Free Brussels University,
Belgium, 1998.

[9] Feit S., TCP/IP: Architecture, Protocols and Dorigo M.
& Di Caro G., “AntNet: Distributed Stigmergetic
Control for Communications Networks,” Journal of
Artificial Intelligence Research, Number 9, pp. 317-365,
1999. Implementation, McGraw Hill, 2nd Edition, 1996.

[10] Goldberg D., Genetic Algorithms in Search,
Optimization, a Machine Learning, Addison-Wesley,
1989.

[11] Schoonderwoerd R., Holland O. & Bruten J., “Ant-like
agents for load balancing in telecommunications
networks,” Technical Report, Hewlett-Packard
Laboratories, Bristol-England, 1997.
http://sigart.acm.org:80/proceedings/agents97/.

[12] Shankar A., Alaettinoglu C. & Matta I., “Performance
Comparison of Routing Protocols using MaRS:
Distance Vector versus Link-State,” Technical Report,
Maryland-USA, 1992.

[13] Tanenbaum A., Computer Network,, Prentice & Hall,
Third Edition, 1996.

